Electromagnetic waves

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter examines solutions to the Maxwell equations in a vacuum: monochromatic plane waves and their polarizations, plane waves, and the motion of a charge in the field of a wave (which is the principle upon which particle detection is based). A plane wave is a solution of the vacuum Maxwell equations which depends on only one of the Cartesian spatial coordinates. The monochromatic plane waves form a basis (in the sense of distributions, because they are not square-integrable) in which any solution of the vacuum Maxwell equations can be expanded. The chapter concludes by giving the conditions for the geometrical optics limit. It also establishes the connection between electromagnetic waves and the kinematic description of light discussed in Book 1.

Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1141-1148 ◽  
Author(s):  
José M. Carcione ◽  
Fabio Cavallini

We derive an analytical solution for electromagnetic waves propagating in a 3‐D lossy orthotropic medium for which the electric permittivity tensor is proportional to the magnetic permeability tensor. The solution is obtained through a change of coordinates that transforms the spatial differential operator into a pure Laplace operator and the differential equations for the electric and magnetic field components into pure Helmholtz equations. A plane‐wave analysis gives the expression of the slowness and attenuation surfaces as a function of frequency and propagation direction. The transverse electric and transverse magnetic surfaces degenerate to one repeated sheet so that, in any direction, the two differently polarized plane waves have the same slowness. A computer experiment with realistic geophysical parameters has shown that the anisotropic propagation and dissipation properties emerging from plane‐wave analysis agree with the different time histories of the magnetic field computed at a number of representative receiver locations.


1959 ◽  
Vol 37 (7) ◽  
pp. 787-797 ◽  
Author(s):  
T. B. A. Senior

The physical optics method is used to determine the scattering of a plane wave by a perfectly conducting sheet having sinusoidal corrugations. The only approximation concerns the current distribution on the sheet and the scattered field then appears as a spectrum of plane waves whose amplitudes are given by a simple integral expression.


Plane gravitational waves are here defined to be non-flat solutions of Einstein’s empty spacetime field equations which admit as much symmetry as do plane electromagnetic waves, namely, a 5-parameter group of motions. A general plane-wave metric is written down and the properties of plane wave space-times are studied in detail. In particular, their characterization as 4 plane ’ is justified further by the construction of 4 sandwich waves ’ bounded on both sides by (null) hyperplanes in flat space-time. It is shown that the passing of a sandwich wave produces a relative acceleration in free test particles, and inferred from this that such waves transport energy.


1998 ◽  
Vol 63 (8) ◽  
pp. 1187-1201 ◽  
Author(s):  
Jaroslav Zamastil ◽  
Lubomír Skála ◽  
Petr Pančoška ◽  
Oldřich Bílek

Using the semiclassical approach for the description of the propagation of the electromagnetic waves in optically active isotropic media we derive a new formula for the circular dichroism parameter. The theory is based on the idea of the time damped electromagnetic wave interacting with the molecules of the sample. In this theory, the Lambert-Beer law need not be taken as an empirical law, however, it follows naturally from the requirement that the electromagnetic wave obeys the Maxwell equations.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Xiaozhou Liu ◽  
Jian Ma ◽  
Haibin Wang ◽  
Sha Gao ◽  
Yifeng Li ◽  
...  

AbstractThe scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.


2020 ◽  
pp. 108128652096564
Author(s):  
Mriganka Shekhar Chaki ◽  
Victor A Eremeyev ◽  
Abhishek K Singh

In this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity. Dispersion equations for both models have been obtained in algebraic form for two types of anti-plane wave, i.e. a Love-type wave and a new type of surface wave (due to micropolarity). The angular frequency and phase velocity of anti-plane waves have been analysed through a numerical study within cut-off frequencies. The obtained results may find suitable applications in thin film technology, non-destructive analysis or biomechanics, where the models discussed here may serve as theoretical frameworks for similar types of phenomena.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


1998 ◽  
Vol 07 (02) ◽  
pp. 237-247 ◽  
Author(s):  
J. B. GRIFFITHS ◽  
G. A. ALEKSEEV

A method for obtaining a class of complex solutions of the Ernst equation is described which is based on a set of linear equations. This method is applied to generate families of unpolarized vacuum and electrovac G2 cosmologies and nondiagonal solutions describing colliding plane gravitational and gravito-electromagnetic waves.


Author(s):  
Evgen Bondarenko

In the paper, using a linear in angular velocity approximation, two basic well-known systems of Maxwell’s equations in a uniformly rotating frame of reference are considered. The first system of equations was first obtained in the work [L. I. Schiff, Proc. Natl. Acad. Sci. USA 25, 391 (1939)] on the base of use of the formalism of the theory of general relativity, and the second one – in the work [W. M. Irvine, Physica 30, 1160 (1964)] on the base of use of the method of orthonormal tetrad in this theory. In the paper, in the approximation of plane waves, these two vectorial systems of Maxwell’s equations are simplified and rewritten in cylindrical coordinates in scalar component form in order to find the lows of propagation of transversal components of electromagnetic waves in a circular resonator of ring laser gyro in the case of its rotation about sensitivity axis. On the base of these two simplified systems of Maxwell’s equations, the well-known wave equation and its analytical solutions for the named transversal components are obtained. As a result of substitution of these solutions into the first and second simplified systems of Maxwell’s equations, it is revealed that they satisfy only the second one.  On this basis, the conclusion is made that the second system of Maxwell’s equations is more suitable for application in the theory of ring laser gyro than the first one.


Sign in / Sign up

Export Citation Format

Share Document