scholarly journals (T, S)-Based Single-Valued Neutrosophic Number Equivalence Matrix and Clustering Method

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 36 ◽  
Author(s):  
Jiongmei Mo ◽  
Han-Liang Huang

Fuzzy clustering is widely used in business, biology, geography, coding for the internet and more. A single-valued neutrosophic set is a generalized fuzzy set, and its clustering algorithm has attracted more and more attention. An equivalence matrix is a common tool in clustering algorithms. At present, there exist no results constructing a single-valued neutrosophic number equivalence matrix using t-norm and t-conorm. First, the concept of a ( T , S ) -based composition matrix is defined in this paper, where ( T , S ) is a dual pair of triangular modules. Then, a ( T , S ) -based single-valued neutrosophic number equivalence matrix is given. A λ -cutting matrix of single-valued neutrosophic number matrix is also introduced. Moreover, their related properties are studied. Finally, an example and comparison experiment are given to illustrate the effectiveness and superiority of our proposed clustering algorithm.

1995 ◽  
Vol 05 (02) ◽  
pp. 239-259
Author(s):  
SU HWAN KIM ◽  
SEON WOOK KIM ◽  
TAE WON RHEE

For data analyses, it is very important to combine data with similar attribute values into a categorically homogeneous subset, called a cluster, and this technique is called clustering. Generally crisp clustering algorithms are weak in noise, because each datum should be assigned to exactly one cluster. In order to solve the problem, a fuzzy c-means, a fuzzy maximum likelihood estimation, and an optimal fuzzy clustering algorithms in the fuzzy set theory have been proposed. They, however, require a lot of processing time because of exhaustive iteration with an amount of data and their memberships. Especially large memory space results in the degradation of performance in real-time processing applications, because it takes too much time to swap between the main memory and the secondary memory. To overcome these limitations, an extended fuzzy clustering algorithm based on an unsupervised optimal fuzzy clustering algorithm is proposed in this paper. This algorithm assigns a weight factor to each distinct datum considering its occurrence rate. Also, the proposed extended fuzzy clustering algorithm considers the degree of importances of each attribute, which determines the characteristics of the data. The worst case is that the whole data has an uniformly normal distribution, which means the importance of all attributes are the same. The proposed extended fuzzy clustering algorithm has better performance than the unsupervised optimal fuzzy clustering algorithm in terms of memory space and execution time in most cases. For simulation the proposed algorithm is applied to color image segmentation. Also automatic target detection and multipeak detection are considered as applications. These schemes can be applied to any other fuzzy clustering algorithms.


2021 ◽  
Author(s):  
Qiuyu Song ◽  
Chengmao Wu ◽  
Xiaoping Tian ◽  
Yue Song ◽  
Xiaokang Guo

Abstract The application of fuzzy clustering algorithms in image segmentation is a hot research topic nowadays. Existing fuzzy clustering algorithms have the following three problems: (1)The parameters of spatial information constraints can$'$t be selected adaptively; (2)The image corrupted by high noise can$'$t be segmented effectively; (3)It is difficult to achieve a balance between noise removal and detail preservation. In the fuzzy clustering based on the optimization model, the choice of distance metric is very important. Since the use of Euclidean distance will lead to sensitivity to outliers and noise, it is difficult to obtain satisfactory segmentation results, which will affect the clustering performance. This paper proposes an optimization algorithm based on the kernel-based fuzzy local information clustering integrating non-local information (KFLNLI). The algorithm adopts a self-integration method to introduce local and non-local information of images, which solves the common problems of current clustering algorithm. Firstly, the self-integration method solves the problem of selecting spatial constraint parameters. The algorithm uses continuous self-learning iteration to calculate the weight coefficients; Secondly, the distance metric uses Gaussian kernel function to induce the distance to further enhance the robustness against noise and the adaptivity of processing different images; Finally, both local and non-local information are introduced to achieve a segmentation effect that can eliminate most of the noise and retain the original details of the image. Experimental results show that the algorithm is superior to existing state-of-the-art fuzzy clustering-related algorithm in the presence of high noise.


Author(s):  
B.K. Tripathy ◽  
Adhir Ghosh

Developing Data Clustering algorithms have been pursued by researchers since the introduction of k-means algorithm (Macqueen 1967; Lloyd 1982). These algorithms were subsequently modified to handle categorical data. In order to handle the situations where objects can have memberships in multiple clusters, fuzzy clustering and rough clustering methods were introduced (Lingras et al 2003, 2004a). There are many extensions of these initial algorithms (Lingras et al 2004b; Lingras 2007; Mitra 2004; Peters 2006, 2007). The MMR algorithm (Parmar et al 2007), its extensions (Tripathy et al 2009, 2011a, 2011b) and the MADE algorithm (Herawan et al 2010) use rough set techniques for clustering. In this chapter, the authors focus on rough set based clustering algorithms and provide a comparative study of all the fuzzy set based and rough set based clustering algorithms in terms of their efficiency. They also present problems for future studies in the direction of the topics covered.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ze Dong ◽  
Hao Jia ◽  
Miao Liu

This paper presents a fuzzy clustering method based on multiobjective genetic algorithm. The ADNSGA2-FCM algorithm was developed to solve the clustering problem by combining the fuzzy clustering algorithm (FCM) with the multiobjective genetic algorithm (NSGA-II) and introducing an adaptive mechanism. The algorithm does not need to give the number of clusters in advance. After the number of initial clusters and the center coordinates are given randomly, the optimal solution set is found by the multiobjective evolutionary algorithm. After determining the optimal number of clusters by majority vote method, the Jm value is continuously optimized through the combination of Canonical Genetic Algorithm and FCM, and finally the best clustering result is obtained. By using standard UCI dataset verification and comparing with existing single-objective and multiobjective clustering algorithms, the effectiveness of this method is proved.


Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 158
Author(s):  
Tran Dinh Khang ◽  
Nguyen Duc Vuong ◽  
Manh-Kien Tran ◽  
Michael Fowler

Clustering is an unsupervised machine learning technique with many practical applications that has gathered extensive research interest. Aside from deterministic or probabilistic techniques, fuzzy C-means clustering (FCM) is also a common clustering technique. Since the advent of the FCM method, many improvements have been made to increase clustering efficiency. These improvements focus on adjusting the membership representation of elements in the clusters, or on fuzzifying and defuzzifying techniques, as well as the distance function between elements. This study proposes a novel fuzzy clustering algorithm using multiple different fuzzification coefficients depending on the characteristics of each data sample. The proposed fuzzy clustering method has similar calculation steps to FCM with some modifications. The formulas are derived to ensure convergence. The main contribution of this approach is the utilization of multiple fuzzification coefficients as opposed to only one coefficient in the original FCM algorithm. The new algorithm is then evaluated with experiments on several common datasets and the results show that the proposed algorithm is more efficient compared to the original FCM as well as other clustering methods.


2013 ◽  
Vol 380-384 ◽  
pp. 1488-1494
Author(s):  
Wang Wei ◽  
Jin Yue Peng

In the research and development of intelligence system, clustering analysis is a very important problem. According to the new direct clustering algorithm using similarity measure of Vague sets as evaluation criteria presented by paper, the Vague direct clustering method are used to analysis using different similarity measure of Vague sets. The experimental result shows that the direct clustering method based on the similarity of Vague sets is effective, and the direct clustering method based on different similarity measure of Vague sets is the same basically, but difference on the steps of clustering. To select different algorithms according different conditions in the work of the actual applications.


Author(s):  
Kei Kitajima ◽  
Yasunori Endo ◽  
Yukihiro Hamasuna ◽  
◽  
◽  
...  

Clustering is a method of data analysis without the use of supervised data. Even-sized clustering based on optimization (ECBO) is a clustering algorithm that focuses on cluster size with the constraints that cluster sizes must be the same. However, this constraints makes ECBO inconvenient to apply in cases where a certain margin of cluster size is allowed. It is believed that this issue can be overcome by applying a fuzzy clustering method. Fuzzy clustering can represent the membership of data to clusters more flexible. In this paper, we propose a new even-sized clustering algorithm based on fuzzy clustering and verify its effectiveness through numerical examples.


2018 ◽  
Vol 27 (2) ◽  
pp. 163-182 ◽  
Author(s):  
Ilanthenral Kandasamy

AbstractNeutrosophy (neutrosophic logic) is used to represent uncertain, indeterminate, and inconsistent information available in the real world. This article proposes a method to provide more sensitivity and precision to indeterminacy, by classifying the indeterminate concept/value into two based on membership: one as indeterminacy leaning towards truth membership and the other as indeterminacy leaning towards false membership. This paper introduces a modified form of a neutrosophic set, called Double-Valued Neutrosophic Set (DVNS), which has these two distinct indeterminate values. Its related properties and axioms are defined and illustrated in this paper. An important role is played by clustering in several fields of research in the form of data mining, pattern recognition, and machine learning. DVNS is better equipped at dealing with indeterminate and inconsistent information, with more accuracy, than the Single-Valued Neutrosophic Set, which fuzzy sets and intuitionistic fuzzy sets are incapable of. A generalised distance measure between DVNSs and the related distance matrix is defined, based on which a clustering algorithm is constructed. This article proposes a Double-Valued Neutrosophic Minimum Spanning Tree (DVN-MST) clustering algorithm, to cluster the data represented by double-valued neutrosophic information. Illustrative examples are given to demonstrate the applications and effectiveness of this clustering algorithm. A comparative study of the DVN-MST clustering algorithm with other clustering algorithms like Single-Valued Neutrosophic Minimum Spanning Tree, Intuitionistic Fuzzy Minimum Spanning Tree, and Fuzzy Minimum Spanning Tree is carried out.


2013 ◽  
Vol 433-435 ◽  
pp. 626-629
Author(s):  
Hong Xin Wan ◽  
Yun Peng

The discovery of public opinion hotspot is an important aspect of public opinion research, and because many similarities and relevance exist between hot topics, we propose a hot topic clustering algorithm to find the hotspot in public opinions. Since fuzzy set can handle non-precision data well, the fuzzy algorithm can reduce the influences of the uncertainty of public opinion data. Based on LDA topic extraction we cluster the topical words by fuzzy method, and take the topic probability as word membership to the cluster. It can reduce the noise data and improve the ability of hotspot discovery that aggregate the similar and related topic to one class. The topical key words with high probability in cluster are the hotspot, and singular cluster with few words can be looked as outlier. The algorithm is demonstrated by example analysis in detail.


Author(s):  
JIAN ZHOU ◽  
CHIH-CHENG HUNG

Fuzzy clustering is an approach using the fuzzy set theory as a tool for data grouping, which has advantages over traditional clustering in many applications. Many fuzzy clustering algorithms have been developed in the literature including fuzzy c-means and possibilistic clustering algorithms, which are all objective-function based methods. Different from the existing fuzzy clustering approaches, in this paper, a general approach of fuzzy clustering is initiated from a new point of view, in which the memberships are estimated directly according to the data information using the fuzzy set theory, and the cluster centers are updated via a performance index. This new method is then used to develop a generalized approach of possibilistic clustering to obtain an infinite family of generalized possibilistic clustering algorithms. We also point out that the existing possibilistic clustering algorithms are members of this family. Following that, some specific possibilistic clustering algorithms in the new family are demonstrated by real data experiments, and the results show that these new proposed algorithms are efficient for clustering and easy for computer implementation.


Sign in / Sign up

Export Citation Format

Share Document