scholarly journals Optimal Design of Isothermal Sloshing Vessels by Entropy Generation Minimization Method

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 380 ◽  
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi

In this manuscript, the optimal design of geometry for a forced sloshing in a rigid container based on the entropy generation minimization (EGM) method is presented. The geometry of the vessel considered here is two dimensional rectangular. Incompressible inviscid fluid undergoes horizontal harmonic motion by interaction with a rigid tank. The analytical solution of a fluid stream function is obtained and benchmarked by Finite element results. A parameter study of the aspect ratio, amplitude, and frequency of the horizontal harmonic motion is performed. As well, an analytical solution for the total entropy generation in the volume is presented and discussed. The total entropy generation is compared with the results of the Reynolds-Averaged Navier–Stokes (RANS) solver and the Volume-of-Fluid (VOF) method). Then, the effect of parameters is studied on the total entropy generated by sway motion. Finally, the results show that, based on the excitation frequency, an optimal design of the tank could be found.

2014 ◽  
Vol 672-674 ◽  
pp. 1676-1679
Author(s):  
Jian Xiao ◽  
Ying Fu Liu

In order to study the performance of a R32/CO2 cascade refrigeration cycle, entropy generation minimization method was adopted to get the influence of some important operating and design parameters on the performance of the system and entropy generations of each component and the whole system, such as the evaporating temperature(Te), the condensing temperature(Tk) and the temperature difference in the cascade condenser(ΔT). The results indicate that there are a maximum COP and a minimum total entropy generation of the system at the optimal condensing temperature of the cascade condenser when Te, Tk and ΔT are constant. The total entropy generations of the throttling device, the condenser and the compressor of HTC, the cascade condenser and the compressor of LTC are above 80% of the total entropy generation of the whole system.


Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1921 ◽  
Author(s):  
Ehsan Gholamalizadeh ◽  
Mohammad Abdollahzadeh Jamalabadi ◽  
Majid Oveisi

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 895
Author(s):  
Mohammad Abdollahzadeh Jamalabadi

The excellent thermal characteristics of nanoparticles have increased their application in the field of heat transfer. In this paper, a thermophysical and geometrical parameter study is performed to minimize the total entropy generation of the viscoelastic flow of nanofluid. Entropy generation with respect to volume fraction (<0.04), the Reynolds number (20,000–100,000), and the diameter of the microchannel (20–20,000 μm) with the circular cross-section under constant flux are calculated. As is shown, most of the entropy generation owes to heat transfer and by increasing the diameter of the channel, the Bejan number increases. The contribution of heat entropy generation in the microchannel is very poor and the major influence of entropy generation is attributable to friction. The maximum quantity of in-channel entropy generation happens in nanofluids with TiO2, CuO, Cu, and Ag nanoparticles, in turn, despite the fact in the microchannel this behavior is inverted, the minimum entropy generation occurs in nanofluids with CuO, Cu, Ag, and TiO2 nanoparticles, in turn. In the channel and microchannel for all nanofluids except water-TiO2, increasing the volume fraction of nanoparticles decreases entropy generation. In the channel and microchannel the total entropy generation increases by augmentation the Reynolds number.


2009 ◽  
Vol 97 (4) ◽  
pp. 777-789 ◽  
Author(s):  
Mehdi Baneshi ◽  
Khosrow Jafarpur ◽  
Mojtaba Mahzoon

Sign in / Sign up

Export Citation Format

Share Document