scholarly journals A New Vision on the Prosumers Energy Surplus Trading Considering Smart Peer-to-Peer Contracts

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 235 ◽  
Author(s):  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov ◽  
Gheorghe Grigoras ◽  
Mihai Gavrilas

A growing number of households benefit from government subsidies to install renewable generation facilities such as PV panels, used to gain independence from the grid and provide cheap energy. In the Romanian electricity market, these prosumers can sell their generation surplus only at regulated prices, back to the grid. A way to increase the number of prosumers is to allow them to make higher profit by selling this surplus back into the local network. This would also be an advantage for the consumers, who could pay less for electricity exempt from network tariffs and benefit from lower prices resulting from the competition between prosumers. One way of enabling this type of trade is to use peer-to-peer contracts traded in local markets, run at microgrid (μG) level. This paper presents a new trading platform based on smart peer-to-peer (P2P) contracts for prosumers energy surplus trading in a real local microgrid. Several trading scenarios are proposed, which give the possibility to perform trading based on participants’ locations, instantaneous active power demand, maximum daily energy demand, and the principle of first come first served implemented in an anonymous blockchain trading ledger. The developed scheme is tested on a low-voltage (LV) microgrid model to check its feasibility of deployment in a real network. A comparative analysis between the proposed scenarios, regarding traded quatities and financial benefits is performed.

Author(s):  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov ◽  
Gheorghe Grigoras ◽  
Mihai Gavrilas

A growing number of households benefit from the government subsidies to install renewable generation facilities such as PV panels, used to gain independence from the grid and provide cheap energy. In the Romanian electricity market, these prosumers can sell their generation surplus only at regulated prices, back to the grid. A way to increase the number of prosumers is to allow them to make higher profit by selling this surplus back into the local network. This would also be an advantage for the consumers, who could pay less for electricity exempt from network tariffs and benefitting from lower prices resulting from the competition between prosumers. One way of enabling this type of trade is to use peer-to-peer contracts traded in local markets, run at microgrid (μG) level. This paper presents a new trading platform based on smart peer-to-peer (P2P) contracts for prosumers energy surplus trading in a real local microgrid. Several trading scenarios are proposed, which give the possibility to perform trading based on participants’ locations, instantaneous active power demand, maximum daily energy demand and the principle of first come first served implemented in an anonymous blockchain trading ledger. The developed scheme is tested on a low-voltage (LV) microgrid model to check its feasibility of deployment in a real network. A comparative analysis between the proposed scenarios, regarding traded quatities and financial benefits is performed.


2019 ◽  
Vol 10 (03) ◽  
pp. 61-74
Author(s):  
Pucheta Julián ◽  
Salas Carlos ◽  
Piumetto Miguel ◽  
Herrera Martín ◽  
Rodriguez Rivero Cristian

2020 ◽  
Vol 19 (1) ◽  
pp. 9-16
Author(s):  
Musayyibi Shuaibu ◽  
Adamu Saidu Abubakar

Renewable energy sources (RES) are being integrated to electrical grid to complement the conventional sources in meeting up with global electrical energy demand. Among the RES, Wind Energy Conversion Systems (WECS) have gained global electricity market competitiveness especially the Doubly Fed Induction Generator (DFIG)-based Wind Turbines (WTs) because of flexible regulation of active and reactive power, higher power quality, variable speed operation, four quadrant converter operation and better dynamic performance. Grid connected DFIG-based WTs are prone to disturbances due to faults in the network which made the utilization of the power generated a major concern. The grid code requirement for integrating the DFIGs to grid specified that they must remain connected and support the grid stability during grid disturbances of up to 1500milliseconds. The ability of the DFIG WT system to uphold to the grid codes requirement is termed the Fault Ride – Through (FRT). This paper presented a 1.5MW grid connected DFIG-based WT model with a Dynamic Voltage Restorer (DVR) for FRT capability enhancement. The design and simulation were performed in MATLAB/Simulink software. The test system was subjected to disturbances leading to Low Voltage Ride – Through (LVRT), Zero Voltage Ride – Through (ZVRT) and High Voltage Ride – Through (HVRT) considering three – phase balanced fault and single line to ground fault. The performance of improved model of DVR shows enhancement over conventional DVR in terms of voltage compensation and fault current mitigation.


Author(s):  
Godwin C. Okwuibe ◽  
Michel Zade ◽  
Peter Tzscheutschler ◽  
Thomas Hamacher ◽  
Ulrich Wagner

2021 ◽  
Vol 11 (2) ◽  
pp. 500
Author(s):  
Fabrizio Pilo ◽  
Giuditta Pisano ◽  
Simona Ruggeri ◽  
Matteo Troncia

The energy transition for decarbonization requires consumers’ and producers’ active participation to give the power system the necessary flexibility to manage intermittency and non-programmability of renewable energy sources. The accurate knowledge of the energy demand of every single customer is crucial for accurately assessing their potential as flexibility providers. This topic gained terrific input from the widespread deployment of smart meters and the continuous development of data analytics and artificial intelligence. The paper proposes a new technique based on advanced data analytics to analyze the data registered by smart meters to associate to each customer a typical load profile (LP). Different LPs are assigned to low voltage (LV) customers belonging to nominal homogeneous category for overcoming the inaccuracy due to non-existent coincident peaks, arising by the common use of a unique LP per category. The proposed methodology, starting from two large databases, constituted by tens of thousands of customers of different categories, clusters their consumption profiles to define new representative LPs, without a priori preferring a specific clustering technique but using that one that provides better results. The paper also proposes a method for associating the proper LP to new or not monitored customers, considering only few features easily available for the distribution systems operator (DSO).


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1815
Author(s):  
Longze Wang ◽  
Yu Xie ◽  
Delong Zhang ◽  
Jinxin Liu ◽  
Siyu Jiang ◽  
...  

Blockchain-based peer-to-peer (P2P) energy trading is one of the most viable solutions to incentivize prosumers in distributed electricity markets. However, P2P energy trading through an open-end blockchain network is not conducive to mutual credit and the privacy protection of stakeholders. Therefore, improving the credibility of P2P energy trading is an urgent problem for distributed electricity markets. In this paper, a novel double-layer energy blockchain network is proposed that stores private trading data separately from publicly available information. This blockchain network is based on optimized cross-chain interoperability technology and fully considers the special attributes of energy trading. Firstly, an optimized ring mapping encryption algorithm is designed to resist malicious nodes. Secondly, a consensus verification subgroup is built according to contract performance, consensus participation and trading enthusiasm. This subgroup verifies the consensus information through the credit-threshold digital signature. Thirdly, an energy trading model is embedded in the blockchain network, featuring dynamic bidding and credit incentives. Finally, the Erenhot distributed electricity market in China is utilized for example analysis, which demonstrates the proposed method could improve the credibility of P2P trading and realize effective supervision.


2021 ◽  
Vol 287 ◽  
pp. 116598
Author(s):  
Jaysson Guerrero ◽  
Bunyim Sok ◽  
Archie C. Chapman ◽  
Gregor Verbič

Author(s):  
Lesme Corredor M. ◽  
Diego Guillen ◽  
José Prada ◽  
Alisson Contreras

Air compression represents around 20% of industrial total electric power demand, especially in chemicals and process companies. Few technical studies related with energy optimization of air compressed networks are reported in the specialized literature, in contrast, in natural gas and steam networks have been widely analyzed. Pressure, temperature and flow monitoring of air compression is not enough for implementation of energy optimization models, for this reason authors have developed a transit conditions model which takes into account air supply equipments and air compressed process requirements. This paper presents a decision support system for the scheduling selection of a set of air compressors in an industrial plant based on energy demand minimization. Several constraints must be taken in consideration during the optimization process, this can be desegregate in two types, the first set of constrains was used for simulate the operation of scroll, screw and centrifuges compressors, the second based in graph an node theory and contain the mathematical transit conditions model of supply air network topology, for the complexity of the problem the use of a genetic algorithm to search an optimal combination was necessary.


2021 ◽  
Vol 69 (2) ◽  
pp. 21-30
Author(s):  
Nasreddine ATTOU ◽  
Sid-Ahmed ZIDI ◽  
Mohamed KHATIR ◽  
Samir HADJERI

Energy management in grid-connected Micro-grids (MG) has undergone rapid evolution in recent times due to several factors such as environmental issues, increasing energy demand and the opening of the electricity market. The Energy Management System (EMS) allows the optimal scheduling of energy resources and energy storage systems in MG in order to maintain the balance between supply and demand at low cost. The aim is to minimize peaks and fluctuations in the load and production profile on the one hand, and, on the other hand, to make the most of renewable energy sources and energy exchanges with the utility grid. In this paper, our attention has been focused on a Rule-based energy management system (RB EMS) applied to a residential multi-source grid-connected MG. A Microgrid model has been implemented that combines distributed energy sources (PV, WT, BESS), a number of EVs equipped with the Vehicle to Grid technology (V2G) and variable load. Different operational scenarios were developed to see the behaviour of the implemented management system during the day, including the random demand profile of EV users, the variation in load and production, grid electricity price variation. The simulation results presented in this paper demonstrate the efficacy of the suggested EMS and confirm the strategy's feasibility as well as its ability to properly share power among different sources, loads and vehicles by obeying constraints on each element.


Sign in / Sign up

Export Citation Format

Share Document