scholarly journals An Advanced Learning-Based Multiple Model Control Supervisor for Pumping Stations in a Smart Water Distribution System

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 887 ◽  
Author(s):  
Alexandru Predescu ◽  
Ciprian-Octavian Truică ◽  
Elena-Simona Apostol ◽  
Mariana Mocanu ◽  
Ciprian Lupu

Water distribution is fundamental to modern society, and there are many associated challenges in the context of large metropolitan areas. A multi-domain approach is required for designing modern solutions for the existing infrastructure, including control and monitoring systems, data science and Machine Learning. Considering the large scale water distribution networks in metropolitan areas, machine and deep learning algorithms can provide improved adaptability for control applications. This paper presents a monitoring and control machine learning-based architecture for a smart water distribution system. Automated test scenarios and learning methods are proposed and designed to predict the network configuration for a modern implementation of a multiple model control supervisor with increased adaptability to changing operating conditions. The high-level processing and components for smart water distribution systems are supported by the smart meters, providing real-time data, push-based and decoupled software architectures and reactive programming.

Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB


Author(s):  
Dhafar Al-Ani ◽  
Saeid Habibi

As time goes on, more and more operating-modes based on changing demand profiles will be compiled to enrich the range of feasible solutions for a water distribution system. This implies the conservation of energy consumed by a water pumping station and improves the ability for energy optimization. Another important goal was improving safety, reliability, and maintenance cost. In this paper, three important goals were addressed: cost-effectives, safety, and self-sustainability operations of water distribution systems. In this work, the objective functions to optimize were total electrical energy cost, maintenance costs, and reservoir water level variation while preserving the service provided to water clients. To accomplish these goals, an effective Energy Optimization Strategy (EOS) that manages trade-off among operational cost, system safety, and reliability was proposed. Moreover, the EOS aims at improving the operating conditions (i.e., pumping schedule) of an existing network system (i.e., with given capacities of tanks) and without physical changes in the infrastructure of the distribution systems. The new strategy consisted of a new Parallel Multi-objective Particle Swarm optimization with Adaptive Search-space Boundaries (P-MOPSO-ASB) and a modified EPANET. This has several advantages: obtaining a Pareto-front with solutions that are quantitatively equally good and providing the decision maker with the opportunity to qualitatively compare the solutions before their implementation into practice. The multi-objective optimization approach developed in this paper follows modern applications that combine an optimization algorithm with a network simulation model by using full hydraulic simulations and distributed demand models. The proposed EOS was successfully applied to a rural water distribution system, namely Saskatoon West. The results showed that a potential for considerable cost reductions in total energy cost was achieved (approximately % 7.5). Furthermore, the safety and the reliability of the system are preserved by using the new optimal pump schedules.


Author(s):  
B. Bharani Baanu ◽  
K. S. Jinesh Babu

Abstract Water is a valuable resource and an elixir of life. It is intimately linked to the living standards around the world. Reducing the water stress and conserving the resource is vital. It is the need of the hour to ameliorate the conventional water resources systems to monitor the water quantity and quality parameters continuously in real-time. Smart solutions play an important role in monitoring the system parameters and make on-site measurements. This paper focuses on Smart Water Grid, an ingenious way to monitor and preserve the quantity and quality parameters in real-time by deploying remote sensors in water distribution system. It presents a review of various sensors deployed, networking protocols used and cloud platforms employed in monitoring the water distribution system. The suitable networking protocols for the water distribution systems are suggested by analyzing various smart solutions. It also proposes an architecture for an IoT-based system to monitor the residual chlorine concentration in water distribution system. Smart Water Grid using Wireless Sensor Networks and the Internet of Things enables to monitor on-site conditions and generates alerts during abnormal conditions. It can enhance timely decision making which will help in managing valuable water resources more efficiently.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1163
Author(s):  
Mengning Qiu ◽  
Avi Ostfeld

Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB.


2004 ◽  
Vol 2 (3) ◽  
pp. 137-156 ◽  
Author(s):  
M. M. Aral ◽  
J. Guan ◽  
M. L. Maslia ◽  
J. B. Sautner ◽  
R. E. Gillig ◽  
...  

In a recently completed case-control epidemiological study, the New Jersey Department of Health and Senior Services (NJDHSS) with support from the Agency for Toxic Substances and Disease Registry (ATSDR) documented an association between prenatal exposure to a specific contaminated community water source and leukaemia in female children. An important and necessary step in the epidemiological study was the reconstruction of the historical water supply strategy of the water distribution system serving the Dover Township area, New Jersey. The sensitivity of solutions to: (1) pressure and pattern factor constraints, (2) allowable operational extremes of water levels in the storage tanks, and (3) the non-uniqueness of the water supply solution are analysed in detail. The computational results show that the proposed approach yields satisfactory results for the complete set of monthly simulations and sensitivity analyses, providing a consistent approach for identifying the historical water supply strategy of the water distribution system. Sensitivity analyses indicated that the alternative strategy obtained from the revised objective function and the variation of constraints did not yield significantly different water supply characteristics. The overall analysis demonstrates that the progressive optimality genetic algorithm (POGA) developed to solve the optimization problem is an effective and efficient algorithm for the reconstruction of water supply strategies in water distribution systems.


2013 ◽  
Vol 59 (3) ◽  
pp. 183-188 ◽  
Author(s):  
V.M. Siqueira ◽  
H.M.B. Oliveira ◽  
C. Santos ◽  
R.R.M. Paterson ◽  
N.B. Gusmão ◽  
...  

Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4′,6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.


2019 ◽  
Vol 22 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
P. Veltri

Abstract The current paper reports on a case study investigating water distribution system management in emergency conditions when it is necessary to seal off a zone with isolation valves to allow repair. In these conditions, the pressure-driven analysis (PDA) is considered to be the most efficient approach for the analysis of a water distribution network (WDN), as it takes into account whether the head in a node is adequate to ensure service. The topics of this paper are innovative because, until now, previous approaches were based on the analysis of the network behaviour in normal conditions. In emergency conditions, it is possible to measure the reliable functioning of the system by defining an objective function (OF) that helps to choose the optimal number of additional valves in order to obtain adequate system control. The OF takes into account the new network topology by excluding the zone where the broken pipe is located. The results show that the solution did not improve significantly when the number of valves reached a threshold. The procedure applied to other real case studies seems to confirm the efficiency of the methodology even if further examination of other cases in different conditions is necessary.


Sign in / Sign up

Export Citation Format

Share Document