scholarly journals Localized Boundary Knot Method for Solving Two-Dimensional Laplace and Bi-Harmonic Equations

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1218 ◽  
Author(s):  
Jingang Xiong ◽  
Jiancong Wen ◽  
Yan-Cheng Liu

In this paper, a localized boundary knot method is proposed, based on the local concept in the localized method of fundamental solutions. The localized boundary knot method is formed by combining the classical boundary knot method and the localization approach. The localized boundary knot method is truly free from mesh and numerical quadrature, so it has great potential for solving complicated engineering applications, such as multiply connected problems. In the proposed localized boundary knot method, both of the boundary nodes and interior nodes are required, and the algebraic equations at each node represent the satisfaction of the boundary condition or governing equation, which can be derived by using the boundary knot method at every subdomain. A sparse system of linear algebraic equations can be yielded using the proposed localized boundary knot method, which can greatly reduce the computer time and memory required in computer calculations. In this paper, several cases of simply connected domains and multi-connected domains of the Laplace equation and bi-harmonic equation are demonstrated to evidently verify the accuracy, convergence and stability of this proposed meshless method.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Pingrun Li

We study singular integral equations of convolution type with cosecant kernels and periodic coefficients in class L2[-π,π]. Such equations are transformed into a discrete jump problem or a discrete system of linear algebraic equations by using discrete Fourier transform. The conditions of Noethericity and the explicit solutions are obtained by means of the theory of classical boundary value problem and of the Fourier analysis theory. This paper will be of great significance for the study of improving and developing complex analysis, integral equations, and boundary value problems.


2008 ◽  
Vol 24 (2) ◽  
pp. 137-144 ◽  
Author(s):  
D. L. Young ◽  
J. T. Wu ◽  
C. L. Chiu

ABSTRACTThe main purpose of this paper is to investigate the pressure-stream function formulation to solve 2D and 3D Stokes flows by the meshless numerical scheme of the method of fundamental solutions (MFS). The MFS can be regarded as a truly scattered, grid-free (or meshless) and non-singular numerical scheme. By the proposed algorithm, the stream function is governed by the bi-harmonic equation while the pressure is governed by the Laplace equation. The velocity field is then obtained by the curl of the stream function for 2D flows and curl of the vector stream function for 3D flows. We can simultaneously solve the pressure, velocity, vorticity, stream function and traction forces fields. Furthermore during the present numerical procedure no pressure boundary condition is needed which is a tedious and forbidden task. The developed algorithm is used to test several numerical experiments for the benchmark examples, including (1) the driven circular cavity, (2) the circular cavity with eccentric rotating cylinder, (3) the square cavity with traction boundary conditions and (4) the uniform flow past a sphere. The results compare very well with the solutions obtained by analytical or other numerical methods such as finite element method (FEM). It is found that the meshless MFS will give a simpler and more efficient and accurate solutions to the Stokes flows investigated in this study.


Author(s):  
T. E. Dyhoum ◽  
D. Lesnic ◽  
R. G. Aykroyd

This paper discusses solving the forward problem for electrical resistance tomography (ERT). The mathematical model is governed by Laplace's equation with the most general boundary conditions forming the so-called complete electrode model (CEM). We examine this problem in simply-connected and multiply - connected domains (rigid inclusion, cavity and composite bi-material). This direct problem is solved numerically using the boundary element method (BEM) and the method of fundamental solutions (MFS). The resulting BEM and MFS solutions are compared in terms of accuracy, convergence and stability. Anticipating the findings, we report that the BEM provides a convergent and stable solution, whilst the MFS places some restrictions on the number and location of the source points.


2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrey A. Pil’nik ◽  
Andrey A. Chernov ◽  
Damir R. Islamov

AbstractIn this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley–Read–Hall-like transport equations, which describe the 1D transport through dielectric layers, might incorrectly describe the charge flow through ultra-thin layers with a countable number of traps, taking into account the injection from and extraction to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for the dynamics of system evolution for special cases. These solutions can be used to test the code and for studying the charge transport properties of thin dielectric films.


2015 ◽  
Vol 4 (3) ◽  
pp. 420 ◽  
Author(s):  
Behrooz Basirat ◽  
Mohammad Amin Shahdadi

<p>The aim of this article is to present an efficient numerical procedure for solving Lane-Emden type equations. We present two practical matrix method for solving Lane-Emden type equations with mixed conditions by Bernstein polynomials operational matrices (BPOMs) on interval [<em>a; b</em>]. This methods transforms Lane-Emden type equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equations. We also give some numerical examples to demonstrate the efficiency and validity of the operational matrices for solving Lane-Emden type equations (LEEs).</p>


Sign in / Sign up

Export Citation Format

Share Document