thin dielectric films
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 7)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrey A. Pil’nik ◽  
Andrey A. Chernov ◽  
Damir R. Islamov

AbstractIn this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley–Read–Hall-like transport equations, which describe the 1D transport through dielectric layers, might incorrectly describe the charge flow through ultra-thin layers with a countable number of traps, taking into account the injection from and extraction to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for the dynamics of system evolution for special cases. These solutions can be used to test the code and for studying the charge transport properties of thin dielectric films.


2020 ◽  
Author(s):  
Andrey Pil'nik ◽  
Andrey Chernov ◽  
Damir Islamov

Abstract In this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley-Read-Hall-like transport equations, which describe 1D transport through dielectric layers, might incorrectly describe the charge flow through the ultra-thin layers with a countable number of traps, taking into account injection-from and extraction-to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for dynamics of system evolution for special cases. These solutions can be used to test the code and for studying of charge transport properties of thin dielectric films.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jeongse Yun ◽  
Jae Gyeong Lee ◽  
Kyungbae Oh ◽  
Kisuk Kang ◽  
Taek Dong Chung

Abstract The breakdown of thin dielectric films (SiO2, Si3N4, HfO2) immersed in aqueous electrolyte was investigated. The current and the kinetics of dielectric breakdown caused by large cathodic electric field applied across the dielectric layer reveal the electrochemical nature of dielectric materials. Electrolytes play a huge role in the established dielectric-electrolyte interface with respect to the overall electrical behavior of the system. Although aqueous cations are considered as spectator ions in most electrochemical systems, in dielectric interfaces the current–potential characteristics depend on the type of cation. Computer simulation based on density functional theory and molecular dynamics showed cations affect the dielectric strength. The responses of various dielectric films to solution components provide invaluable information for dielectric-incorporated electrochemical systems.


Technologies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 122
Author(s):  
Christos Mpilitos ◽  
Stamatios Amanatiadis ◽  
Georgios Apostolidis ◽  
Theodoros Zygiridis ◽  
Nikolaos Kantartzis ◽  
...  

An efficient transmission line model in the micrometric order is presented in this paper, to determine the thickness of thin dielectric films deposited on highly-doped substrates. In particular, the estimation of the thickness is based on multiple reflections of an incident infrared electromagnetic wave generating interference on the sensor. To this objective, the periodicity of the local maxima and minima, including the phase shift and wavelength dependence of the reflection at the layer-substrate interface, leads in the extraction of the required thickness. Moreover, a theoretical transmission line circuit is designed, in order to model the multiple interferences scenario, and an iterative method is developed to converge towards the correct coating thickness. The featured theoretical transmission line model is validated, via a direct comparison with Certified Reference Materials, to indicate its overall accuracy and reliability level. Finally, the proposed method is utilized to calculate the thickness of coated metallic samples.


Author(s):  
Ryan J. Waskiewicz ◽  
Elias B. Frantz ◽  
Patrick M. Lenahan ◽  
Sean W. King ◽  
Nicholas J. Harmon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document