scholarly journals RNA: A Reject Neighbors Algorithm for Influence Maximization in Complex Networks

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1313
Author(s):  
Dongqi Wang ◽  
Jiarui Yan ◽  
Dongming Chen ◽  
Bo Fang ◽  
Xinyu Huang

The influence maximization problem (IMP) in complex networks is to address finding a set of key nodes that play vital roles in the information diffusion process, and when these nodes are employed as ”seed nodes”, the diffusion effect is maximized. First, this paper presents a refined network centrality measure, a refined shell (RS) index for node ranking, and then proposes an algorithm for identifying key node sets, namely the reject neighbors algorithm (RNA), which consists of two main sequential parts, i.e., node ranking and node selection. The RNA refuses to select multiple-order neighbors of the seed nodes, scatters the selected nodes from each other, and results in the maximum influence of the identified node set on the whole network. Experimental results on real-world network datasets show that the key node set identified by the RNA exhibits significant propagation capability.

In a social network the individuals connected to one another become influenced by one another, while some are more influential than others and able to direct groups of individuals towards a move, an idea and an entity. These individuals are named influential users. Attempt is made by the social network researchers to identify such individuals because by changing their behaviors and ideologies due to communications and the high influence on one another would change many others' behaviors and ideologies in a given community. In information diffusion models, at all stages, individuals are influenced by their neighboring people. These influences and impressions thereof are constructive in an information diffusion process. In the Influence Maximization problem, the goal is to finding a subset of individuals in a social network such that by activating them, the spread of influence is maximized. In this work a new algorithm is presented to identify most influential users under the linear threshold diffusion model. It uses explicit multimodal evolutionary algorithms. Four different datasets are used to evaluate the proposed method. The results show that the precision of our method in average is improved 4.8% compare to best known previous works.


2021 ◽  
Author(s):  
Sun Chengai ◽  
Duan Xiuliang ◽  
Qiu Liqing ◽  
Shi Qiang ◽  
Li Tengteng

Abstract A core issue in influence propagation is influence maximization, which aims to find a group of nodes under a specific information diffusion model and maximize the final influence of this group of nodes. The limitation of the existing researches is that they excessively depend on the information diffusion model and randomly set the propagation ability (probability). Therefore, most of the algorithms for solving the influence maximization problem are basically difficult to expand in large social networks. Another challenge is that fewer researchers have paid attention to the problem of the large difference between the estimated influence spread and the actual influence spread. A measure to solve the influence maximization problem is applying advanced neural network architecture also represents learning method. Based on this idea, the paper proposes Representation Learning for Influence Maximization (RLIM) algorithm. The premise of this algorithm is to construct the influence cascade of each source node. The key is to adopt neural network architecture to realize the prediction of propagation ability. The purpose is to apply the propagation ability to the influence maximization problem by representation learning. Furthermore, the results of the experiments show that RLIM algorithm has greater diffusion ability than the state-of-the-art algorithms on different online social network data sets, and the diffusion of information is more accurate.


Author(s):  
Mustafa K. Alasadi ◽  
Ghusoon Idan Arb

<p>Given a social graph, the influence maximization problem (IMP) is the act of selecting a group of nodes that cause maximum influence if they are considered as seed nodes of a diffusion process. IMP is an active research area in social network analysis due to its practical need in applications like viral marketing, target advertisement, and recommendation system. In this work, we propose an efficient solution for IMP based on the social network structure. The community structure is a property of real-world graphs. In fact, communities are often overlapping because of the involvement of users in many groups (family, workplace, and friends). These users are represented by overlapped nodes in the social graphs and they play a special role in the information diffusion process. This fact prompts us to propose a solution framework consisting of three phases: firstly, the community structure is discovered, secondly, the candidate seeds are generated, then lastly the set of final seed nodes are selected. The aim is to maximize the influence with the community diversity of influenced users. The study was validated using synthetic as well as real social network datasets. The experimental results show improvement over baseline methods and some important conclusions were reported.</p>


Author(s):  
Liman Du ◽  
Wenguo Yang ◽  
Suixiang Gao

The number of social individuals who interact with their friends through social networks is increasing, leading to an undeniable fact that word-of-mouth marketing has become one of the useful ways to promote sale of products. The Constrained Profit Maximization in Attribute network (CPMA) problem, as an extension of the classical influence maximization problem, is the main focus of this paper. We propose the profit maximization in attribute network problem under a cardinality constraint which is closer to the actual situation. The profit spread metric of CPMA calculates the total benefit and cost generated by all the active nodes. Different from the classical Influence Maximization problem, the influence strength should be recalculated according to the emotional tendency and classification label of nodes in attribute networks. The profit spread metric is no longer monotone and submodular in general. Given that the profit spread metric can be expressed as the difference between two submodular functions and admits a DS decomposition, a three-phase algorithm named as Marginal increment and Community-based Prune and Search(MCPS) Algorithm frame is proposed which is based on Louvain algorithm and logistic function. Due to the method of marginal increment, MPCS algorithm can compute profit spread more directly and accurately. Experiments demonstrate the effectiveness of MCPS algorithm.


Computing ◽  
2021 ◽  
Author(s):  
Zahra Aghaee ◽  
Mohammad Mahdi Ghasemi ◽  
Hamid Ahmadi Beni ◽  
Asgarali Bouyer ◽  
Afsaneh Fatemi

2020 ◽  
Vol 08 (01) ◽  
pp. 93-112
Author(s):  
Péter Marjai ◽  
Attila Kiss

For decades, centrality has been one of the most studied concepts in the case of complex networks. It addresses the problem of identification of the most influential nodes in the network. Despite the large number of the proposed methods for measuring centrality, each method takes different characteristics of the networks into account while identifying the “vital” nodes, and for the same reason, each has its advantages and drawbacks. To resolve this problem, the TOPSIS method combined with relative entropy can be used. Several of the already existing centrality measures have been developed to be effective in the case of static networks, however, there is an ever-increasing interest to determine crucial nodes in dynamic networks. In this paper, we are investigating the performance of a new method that identifies influential nodes based on relative entropy, in the case of dynamic networks. To classify the effectiveness, the Suspected-Infected model is used as an information diffusion process. We are investigating the average infection capacity of ranked nodes, the Time-Constrained Coverage as well as the Cover Time.


2019 ◽  
Vol 11 (4) ◽  
pp. 95
Author(s):  
Wang ◽  
Zhu ◽  
Liu ◽  
Wang

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.


Sign in / Sign up

Export Citation Format

Share Document