scholarly journals A Survey on Domination in Vague Graphs with Application in Transferring Cancer Patients between Countries

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1258
Author(s):  
Yongsheng Rao ◽  
Ruxian Chen ◽  
Pu Wu ◽  
Huiqin Jiang ◽  
Saeed Kosari

Many problems of practical interest can be modeled and solved by using fuzzy graph (FG) algorithms. In general, fuzzy graph theory has a wide range of application in various fields. Since indeterminate information is an essential real-life problem and is often uncertain, modeling these problems based on FG is highly demanding for an expert. A vague graph (VG) can manage the uncertainty relevant to the inconsistent and indeterminate information of all real-world problems in which fuzzy graphs may not succeed in bringing about satisfactory results. Domination in FGs theory is one of the most widely used concepts in various sciences, including psychology, computer sciences, nervous systems, artificial intelligence, decision-making theory, etc. Many research studies today are trying to find other applications for domination in their field of interest. Hence, in this paper, we introduce different kinds of domination sets, such as the edge dominating set (EDS), the total edge dominating set (TEDS), the global dominating set (GDS), and the restrained dominating set (RDS), in product vague graphs (PVGs) and try to represent the properties of each by giving some examples. The relation between independent edge sets (IESs) and edge covering sets (ECSs) are established. Moreover, we derive the necessary and sufficient conditions for an edge dominating set to be minimal and show when a dominance set can be a global dominance set. Finally, we try to explain the relationship between a restrained dominating set and a restrained independent set with an example. Today, we see that there are still diseases that can only be treated in certain countries because they require a long treatment period with special medical devices. One of these diseases is leukemia, which severely affects the immune system and the body’s defenses, making it impossible for the patient to continue living a normal life. Therefore, in this paper, using a dominating set, we try to categorize countries that are in a more favorable position in terms of medical facilities, so that we can transfer the patients to a suitable hospital in the countries better suited in terms of both cost and distance.

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1647
Author(s):  
Yongsheng Rao ◽  
Saeed Kosari ◽  
Zehui Shao

Fuzzy graph models enjoy the ubiquity of being present in nature and man-made structures, such as the dynamic processes in physical, biological, and social systems. As a result of inconsistent and indeterminate information inherent in real-life problems that are often uncertain, for an expert, it is highly difficult to demonstrate those problems through a fuzzy graph. Resolving the uncertainty associated with the inconsistent and indeterminate information of any real-world problem can be done using a vague graph (VG), with which the fuzzy graphs may not generate satisfactory results. The limitations of past definitions in fuzzy graphs have led us to present new definitions in VGs. The objective of this paper is to present certain types of vague graphs (VGs), including strongly irregular (SI), strongly totally irregular (STI), neighborly edge irregular (NEI), and neighborly edge totally irregular vague graphs (NETIVGs), which are introduced for the first time here. Some remarkable properties associated with these new VGs were investigated, and necessary and sufficient conditions under which strongly irregular vague graphs (SIVGs) and highly irregular vague graphs (HIVGs) are equivalent were obtained. The relation among strongly, highly, and neighborly irregular vague graphs was established. A comparative study between NEI and NETIVGs was performed. Different examples are provided to evaluate the validity of the new definitions. A new definition of energy called the Laplacian energy (LE) is presented, and its calculation is shown with some examples. Likewise, we introduce the notions of the adjacency matrix (AM), degree matrix (DM), and Laplacian matrix (LM) of VGs. The lower and upper bounds for the Laplacian energy of a VG are derived. Furthermore, this study discusses the VG energy concept by providing a real-time example. Finally, an application of the proposed concepts is presented to find the most effective person in a hospital.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaolong Shi ◽  
Saeed Kosari

The product vague graph (PVG) is one of the most significant issues in fuzzy graph theory, which has many applications in the medical sciences today. The PVG can manage the uncertainty, connected to the unpredictable and unspecified data of all real-world problems, in which fuzzy graphs (FGs) will not conceivably ensue into generating adequate results. The limitations of previous definitions in FGs have led us to present new definitions in PVGs. Domination is one of the highly remarkable areas in fuzzy graph theory that have many applications in medical and computer sciences. Therefore, in this study, we introduce distinctive concepts and properties related to domination in product vague graphs such as the edge dominating set, total dominating set, perfect dominating set, global dominating set, and edge independent set, with some examples. Finally, we propose an implementation of the concept of a dominating set in medicine that is related to the COVID-19 pandemic.


2021 ◽  
pp. 1-13
Author(s):  
A.A. Talebi ◽  
G. Muhiuddin ◽  
S.H. Sadati ◽  
Hossein Rashmanlou

Fuzzy graphs have a prominent place in the mathematical modelling of the problems due to the simplicity of representing the relationships between topics. Gradually, with the development of science and in encountering with complex problems and the existence of multiple relationships between variables, the need to consider fuzzy graphs with multiple relationships was felt. With the introduction of the graph structures, there was better flexibility than the graph in dealing with problems. By combining a graph structure with a fuzzy graph, a fuzzy graph structure was introduced that increased the decision-making power of complex problems based on uncertainties. The previous definitions restrictions in fuzzy graphs have made us present new definitions in the fuzzy graph structure. The domination of fuzzy graphs has many applications in other sciences including computer science, intelligent systems, psychology, and medical sciences. Hence, in this paper, first we study the dominating set in a fuzzy graph structure from the perspective of the domination number of its fuzzy relationships. Likewise, we determine the domination in terms of neighborhood, degree, and capacity of vertices with some examples. Finally, applications of domination are introduced in fuzzy graph structure.


2013 ◽  
Vol 13 (2) ◽  
pp. 58-62
Author(s):  
S. Vimala ◽  
J. S. Sathya

Abstract Let G be a fuzzy graph. Let γ(G), γp(G) denote respectively the domination number, the point set domination number of a fuzzy graph. A dominating set D of a fuzzy graph is said to be a point set dominating set of a fuzzy graph if for every S⊆V-D there exists a node d∈D such that 〈S ∪ {d}〉 is a connected fuzzy graph. The minimum cardinality taken over all minimal point set dominating set is called a point set domination number of a fuzzy graph G and it is denoted by γp(G). In this paper we concentrate on the point set domination number of a fuzzy graph and obtain some bounds using the neighbourhood degree of fuzzy graphs.


2016 ◽  
Vol 12 (01) ◽  
pp. 1-10
Author(s):  
S. Arumugam ◽  
Kiran Bhutani ◽  
L. Sathikala

Let [Formula: see text] be a fuzzy graph on a finite set [Formula: see text] Let [Formula: see text] and [Formula: see text] A fuzzy subset [Formula: see text] of [Formula: see text] is called an [Formula: see text]-fuzzy dominating set ([Formula: see text]-FD set) of G if [Formula: see text] Then [Formula: see text] is called the [Formula: see text]-fuzzy domination number of [Formula: see text] where the minimum is taken over all [Formula: see text]-FD sets [Formula: see text] of [Formula: see text] In this paper we initiate a study of this parameter and other related concepts such as [Formula: see text]-fuzzy irredundance and [Formula: see text]-fuzzy independence. We obtain the [Formula: see text]-fuzzy domination chain which is analogous to the domination chain in crisp graphs.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1608-1610

A set L⊆ V (G) of a fuzzy graphG = (V, E) is a liar's dominating set if (1) for all υ∈ V (G), |N[υ] ∩ L | ≥ 2 and (2) for each pair ( u, v) ∈ V (G) of unmistakable vertices, |N[u] ∪ N[v] ∩ L| ≥ 3. In this paper, we consider the liar's control number of some center graphs. Crown result of twofuzzy graphs which is undifferentiated from the idea crown item activity in fresh graph hypothesis is characterized. The level of an edge in crown result of fuzzy graphs is acquired. Additionally, the level of an edge in fuzzy graph framed by this activity as far as the level of edges in the given fuzzy graphs in some specific cases is found. In addition, it is demonstrated that crown result of two fuzzy graphs is compelling when two fuzzy graphs are powerful fuzzy graphs


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1885
Author(s):  
Yongsheng Rao ◽  
Saeed Kosari ◽  
Zehui Shao ◽  
Ruiqi Cai ◽  
Liu Xinyue

Fuzzy graphs (FGs), broadly known as fuzzy incidence graphs (FIGs), have been acknowledged as being an applicable and well-organized tool to epitomize and solve many multifarious real-world problems in which vague data and information are essential. Owing to unpredictable and unspecified information being an integral component in real-life problems that are often uncertain, it is highly challenging for an expert to illustrate those problems through a fuzzy graph. Therefore, resolving the uncertainty accompanying the unpredictable and unspecified information of any real-world problem can be done by applying a vague incidence graph (VIG), based on which the FGs may not engender satisfactory results. Similarly, VIGs are outstandingly practical tools for analyzing different computer science domains such as networking, clustering, and also other issues such as medical sciences, and traffic planning. Dominating sets (DSs) enjoy practical interest in several areas. In wireless networking, DSs are being used to find efficient routes with ad-hoc mobile networks. They have also been employed in document summarization, and in secure systems designs for electrical grids; consequently, in this paper, we extend the concept of the FIG to the VIG, and show some of its important properties. In particular, we discuss the well-known problems of vague incidence dominating set, valid degree, isolated vertex, vague incidence irredundant set and their cardinalities related to the dominating, etc. Finally, a DS application for VIG to properly manage the COVID-19 testing facility is introduced.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 551 ◽  
Author(s):  
Liangsong Huang ◽  
Yu Hu ◽  
Yuxia Li ◽  
P. K. Kishore Kumar ◽  
Dipak Koley ◽  
...  

Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results. The concepts of the regularity and degree of a node play a significant role in both the theory and application of graph theory in the neutrosophic environment. In this work, we describe the utility of the regular neutrosophic graph and bipartite neutrosophic graph to model an assignment problem, a road transport network, and a social network. For this purpose, we introduce the definitions of the regular neutrosophic graph, star neutrosophic graph, regular complete neutrosophic graph, complete bipartite neutrosophic graph, and regular strong neutrosophic graph. We define the d m - and t d m -degrees of a node in a regular neutrosophic graph. Depending on the degree of the node, this paper classifies the regularity of a neutrosophic graph into three types, namely d m -regular, t d m -regular, and m-highly irregular neutrosophic graphs. We present some theorems and properties of those regular neutrosophic graphs. The concept of an m-highly irregular neutrosophic graph on cycle and path graphs is also investigated in this paper. The definition of busy and free nodes in a regular neutrosophic graph is presented here. We introduce the idea of the μ -complement and h-morphism of a regular neutrosophic graph. Some properties of complement and isomorphic regular neutrosophic graphs are presented here.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1279
Author(s):  
Irfan Nazeer ◽  
Tabasam Rashid ◽  
Muhammad Tanveer Hussain ◽  
Juan Luis García Guirao

Fuzzy graphs (FGs), broadly known as fuzzy incidence graphs (FIGs), are an applicable and well-organized tool to epitomize and resolve multiple real-world problems in which ambiguous data and information are essential. In this article, we extend the idea of domination of FGs to the FIG using strong pairs. An idea of strong pair dominating set and a strong pair domination number (SPDN) is explained with various examples. A theorem to compute SPDN for a complete fuzzy incidence graph (CFIG) is also provided. It is also proved that in any fuzzy incidence cycle (FIC) with l vertices the minimum number of elements in a strong pair dominating set are M[γs(Cl(σ,ϕ,η))]=⌈l3⌉. We define the joining of two FIGs and present a way to compute SPDN in the join of FIGs. A theorem to calculate SPDN in the joining of two strong fuzzy incidence graphs is also provided. An innovative idea of accurate domination of FIGs is also proposed. Some instrumental and useful results of accurate domination for FIC are also obtained. In the end, a real-life application of SPDN to find which country/countries has/have the best trade policies among different countries is examined. Our proposed method is symmetrical to the optimization.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 470 ◽  
Author(s):  
Cen Zuo ◽  
Anita Pal ◽  
Arindam Dey

The picture fuzzy set is an efficient mathematical model to deal with uncertain real life problems, in which a intuitionistic fuzzy set may fail to reveal satisfactory results. Picture fuzzy set is an extension of the classical fuzzy set and intuitionistic fuzzy set. It can work very efficiently in uncertain scenarios which involve more answers to these type: yes, no, abstain and refusal. In this paper, we introduce the idea of the picture fuzzy graph based on the picture fuzzy relation. Some types of picture fuzzy graph such as a regular picture fuzzy graph, strong picture fuzzy graph, complete picture fuzzy graph, and complement picture fuzzy graph are introduced and some properties are also described. The idea of an isomorphic picture fuzzy graph is also introduced in this paper. We also define six operations such as Cartesian product, composition, join, direct product, lexicographic and strong product on picture fuzzy graph. Finally, we describe the utility of the picture fuzzy graph and its application in a social network.


Sign in / Sign up

Export Citation Format

Share Document