scholarly journals New Concepts of Picture Fuzzy Graphs with Application

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 470 ◽  
Author(s):  
Cen Zuo ◽  
Anita Pal ◽  
Arindam Dey

The picture fuzzy set is an efficient mathematical model to deal with uncertain real life problems, in which a intuitionistic fuzzy set may fail to reveal satisfactory results. Picture fuzzy set is an extension of the classical fuzzy set and intuitionistic fuzzy set. It can work very efficiently in uncertain scenarios which involve more answers to these type: yes, no, abstain and refusal. In this paper, we introduce the idea of the picture fuzzy graph based on the picture fuzzy relation. Some types of picture fuzzy graph such as a regular picture fuzzy graph, strong picture fuzzy graph, complete picture fuzzy graph, and complement picture fuzzy graph are introduced and some properties are also described. The idea of an isomorphic picture fuzzy graph is also introduced in this paper. We also define six operations such as Cartesian product, composition, join, direct product, lexicographic and strong product on picture fuzzy graph. Finally, we describe the utility of the picture fuzzy graph and its application in a social network.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Awais Asif ◽  
Hassen Aydi ◽  
Muhammad Arshad ◽  
Zeeshan Ali

A picture fuzzy n-normed linear space (NPF), a mixture of a picture fuzzy set and an n-normed linear space, is a proficient concept to cope with uncertain and unpredictable real-life problems. The purpose of this manuscript is to present some novel contractive conditions based on NPF. By using these contractive conditions, we explore some fixed point theorems in a picture fuzzy n-Banach space (BPF). The discussed modified results are more general than those in the existing literature which are based on an intuitionistic fuzzy n-Banach space (BIF) and a fuzzy n-Banach space. To express the reliability and effectiveness of the main results, we present several examples to support our main theorems.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 588 ◽  
Author(s):  
Songyi Yin ◽  
Hongxu Li ◽  
Yang Yang

The q-rung orthopair fuzzy graph is an extension of intuitionistic fuzzy graph and Pythagorean fuzzy graph. In this paper, the degree and total degree of a vertex in q-rung orthopair fuzzy graphs are firstly defined. Then, some product operations on q-rung orthopair fuzzy graphs, including direct product, Cartesian product, semi-strong product, strong product, and lexicographic product, are defined. Furthermore, some theorems about the degree and total degree under these product operations are put forward and elaborated with several examples. In particular, these theorems improve the similar results in single-valued neutrosophic graphs and Pythagorean fuzzy graphs.


Author(s):  
Isnaini Rosyida ◽  
Suryono Suryono

In a fuzzy set (FS), there is a concept of alpha-cuts of the FS for alpha in [0,1]. Further, this concept was extended into (alpha,delta)-cuts in an intuitionistic fuzzy set (IFS) for delta in [0,1]. One of the expansions of FS and IFS is the picture fuzzy set (PFS). Hence, the concept of (alpha,delta)-cuts was developed into (alpha,delta,beta)-cuts in a PFS where beta is an element of [0,1]. Since a picture fuzzy graph (PFG) consists of picture fuzzy vertex or edge sets or both of them, we have an idea to construct the notion of the (alpha,delta,beta)-cuts in a PFG. The steps used in this paper are developing theories and algorithms. The objectives in this research are to construct the concept of (alpha,delta,beta)-cuts in picture fuzzy graphs (PFGs), to construct the (alpha,delta,beta)-cuts coloring of PFGs, and to design an algorithm for finding the cut chromatic numbers of PFGs. The first result is a definition of the (alpha,delta,beta)-cut in picture fuzzy graphs (PFGs) where (alpha,delta,beta) are elements of a level set of the PFGs. Further, some properties of the cuts are proved. The second result is a concept of PFG coloring and the chromatic number of PFG based on the cuts. The third result is an algorithm to find the cuts and the chromatic numbers of PFGs. Finally, an evaluation of the algorithm is done through Matlab programming. This research could be used to solve some problems related to theories and applications of PFGs.


2019 ◽  
Vol 8 (3) ◽  
pp. 8536-8545

The observation of an Intuitionistic Fuzzy Graph’s signless laplacian energy is expanded innumerous products in Intuitionistic Fuzzy Graph. During this paper, we have got the value of signless laplacian Energy in unrelated products such as Cartesian product, Lexicographic Product, Tensor product and Strong Product, product, product and product amongst 2 intuitionistic Fuzzy graphs. Additionally we tend to study the relation between the Signless laplacian Energy within the varied products in 2 Intuitionistic Fuzzy Graphs


2021 ◽  
Vol 10 (3) ◽  
pp. 1-17
Author(s):  
Debabrata Mandal

The classical set theory was extended by the theory of fuzzy set and its several generalizations, for example, intuitionistic fuzzy set, interval valued fuzzy set, cubic set, hesitant fuzzy set, soft set, neutrosophic set, etc. In this paper, the author has combined the concepts of intuitionistic fuzzy set and hesitant fuzzy set to study the ideal theory of semirings. After the introduction and the priliminary of the paper, in Section 3, the author has defined hesitant intuitionistic fuzzy ideals and studied several properities of it using the basic operations intersection, homomorphism and cartesian product. In Section 4, the author has also defined hesitant intuitionistic fuzzy bi-ideals and hesitant intuitionistic fuzzy quasi-ideals of a semiring and used these to find some characterizations of regular semiring. In that section, the author also has discussed some inter-relations between hesitant intuitionistic fuzzy ideals, hesitant intuitionistic fuzzy bi-ideals and hesitant intuitionistic fuzzy quasi-ideals, and obtained some of their related properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tulat Naeem ◽  
Abdu Gumaei ◽  
Muhammad Kamran Jamil ◽  
Ahmed Alsanad ◽  
Kifayat Ullah

Connectivity index CI has a vital role in real-world problems especially in Internet routing and transport network flow. Intuitionistic fuzzy graphs IFGs allow to describe two aspects of information using membership and nonmembership degrees under uncertainties. Keeping in view the importance of CI s in real life problems and comprehension of IFGs , we aim to develop some CI s in the environment of IFGs . We introduce two types of CI s , namely, CI and average CI , in the frame of IFGs . In spite of that, certain kinds of nodes called IF connectivity enhancing node IFCEN , IF connectivity reducing node IFCRN , and IF neutral node are introduced for IFGs . We have introduced strongest strong cycles, θ -evaluation of vertices, cycle connectivity, and CI of strong cycle. Applications of the CI s in two different types of networks are done, Internet routing and transport network flow, followed by examples to show the applicability of the proposed work.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1647
Author(s):  
Yongsheng Rao ◽  
Saeed Kosari ◽  
Zehui Shao

Fuzzy graph models enjoy the ubiquity of being present in nature and man-made structures, such as the dynamic processes in physical, biological, and social systems. As a result of inconsistent and indeterminate information inherent in real-life problems that are often uncertain, for an expert, it is highly difficult to demonstrate those problems through a fuzzy graph. Resolving the uncertainty associated with the inconsistent and indeterminate information of any real-world problem can be done using a vague graph (VG), with which the fuzzy graphs may not generate satisfactory results. The limitations of past definitions in fuzzy graphs have led us to present new definitions in VGs. The objective of this paper is to present certain types of vague graphs (VGs), including strongly irregular (SI), strongly totally irregular (STI), neighborly edge irregular (NEI), and neighborly edge totally irregular vague graphs (NETIVGs), which are introduced for the first time here. Some remarkable properties associated with these new VGs were investigated, and necessary and sufficient conditions under which strongly irregular vague graphs (SIVGs) and highly irregular vague graphs (HIVGs) are equivalent were obtained. The relation among strongly, highly, and neighborly irregular vague graphs was established. A comparative study between NEI and NETIVGs was performed. Different examples are provided to evaluate the validity of the new definitions. A new definition of energy called the Laplacian energy (LE) is presented, and its calculation is shown with some examples. Likewise, we introduce the notions of the adjacency matrix (AM), degree matrix (DM), and Laplacian matrix (LM) of VGs. The lower and upper bounds for the Laplacian energy of a VG are derived. Furthermore, this study discusses the VG energy concept by providing a real-time example. Finally, an application of the proposed concepts is presented to find the most effective person in a hospital.


Author(s):  
Nguyen Van Dinh ◽  
Nguyen Xuan Thao

To measure the difference of two fuzzy sets (FSs) / intuitionistic sets (IFSs), we can use the distance measure and dissimilarity measure between fuzzy sets/intuitionistic fuzzy set. Characterization of distance/dissimilarity measure between fuzzy sets/intuitionistic fuzzy set is important as it has application in different areas: pattern recognition, image segmentation, and decision making. Picture fuzzy set (PFS) is a generalization of fuzzy set and intuitionistic set, so that it have many application. In this paper, we introduce concepts: difference between PFS-sets, distance measure and dissimilarity measure between picture fuzzy sets, and also provide  the formulas for determining these values. We also present an application of dissimilarity measures in the sample recognition problems, can also be considered a decision-making problem.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 551 ◽  
Author(s):  
Liangsong Huang ◽  
Yu Hu ◽  
Yuxia Li ◽  
P. K. Kishore Kumar ◽  
Dipak Koley ◽  
...  

Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results. The concepts of the regularity and degree of a node play a significant role in both the theory and application of graph theory in the neutrosophic environment. In this work, we describe the utility of the regular neutrosophic graph and bipartite neutrosophic graph to model an assignment problem, a road transport network, and a social network. For this purpose, we introduce the definitions of the regular neutrosophic graph, star neutrosophic graph, regular complete neutrosophic graph, complete bipartite neutrosophic graph, and regular strong neutrosophic graph. We define the d m - and t d m -degrees of a node in a regular neutrosophic graph. Depending on the degree of the node, this paper classifies the regularity of a neutrosophic graph into three types, namely d m -regular, t d m -regular, and m-highly irregular neutrosophic graphs. We present some theorems and properties of those regular neutrosophic graphs. The concept of an m-highly irregular neutrosophic graph on cycle and path graphs is also investigated in this paper. The definition of busy and free nodes in a regular neutrosophic graph is presented here. We introduce the idea of the μ -complement and h-morphism of a regular neutrosophic graph. Some properties of complement and isomorphic regular neutrosophic graphs are presented here.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 328 ◽  
Author(s):  
A. Kalimulla ◽  
R. Vijayaragavan ◽  
S. Sharief Basha

The concept of energy of an Intuitionistic Fuzzy Graph is extended to dominating Energy in operations on Intuitionistic Fuzzy Graph. In this paper, We have obtained the value of dominating Energy in different operations such as complement, Union, Join, Cartesian product and composition between two intuitionistic Fuzzy graphs. Also we study the relation between the dominating Energy in the operations on two Intuitionistic Fuzzy Graphs.  


Sign in / Sign up

Export Citation Format

Share Document