scholarly journals Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1866
Author(s):  
Mohamed Jleli ◽  
Bessem Samet ◽  
Calogero Vetro

Higher order fractional differential equations are important tools to deal with precise models of materials with hereditary and memory effects. Moreover, fractional differential inequalities are useful to establish the properties of solutions of different problems in biomathematics and flow phenomena. In the present work, we are concerned with the nonexistence of global solutions to a higher order fractional differential inequality with a nonlinearity involving Caputo fractional derivative. Namely, using nonlinear capacity estimates, we obtain sufficient conditions for which we have no global solutions. The a priori estimates of the structure of solutions are obtained by a precise analysis of the integral form of the inequality with appropriate choice of test function.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 630
Author(s):  
Dandan Yang ◽  
Chuanzhi Bai

In this paper, we investigate the existence of solutions for a class of anti-periodic fractional differential inclusions with ψ -Riesz-Caputo fractional derivative. A new definition of ψ -Riesz-Caputo fractional derivative of order α is proposed. By means of Contractive map theorem and nonlinear alternative for Kakutani maps, sufficient conditions for the existence of solutions to the fractional differential inclusions are given. We present two examples to illustrate our main results.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Manzoor Ahmad ◽  
Jiqiang Jiang ◽  
Akbar Zada ◽  
Syed Omar Shah ◽  
Jiafa Xu

In this paper, we study the existence and uniqueness of solutions to implicit the coupled fractional differential system with the Katugampola–Caputo fractional derivative. Different fixed-point theorems are used to acquire the required results. Moreover, we derive some sufficient conditions to guarantee that the solutions to our considered system are Hyers–Ulam stable. We also provided an example that explains our results.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mohamed Jleli ◽  
Bessem Samet

We study the nonexistence of global solutions for new classes of nonlinear fractional differential inequalities. Namely, sufficient conditions are provided so that the considered problems admit no global solutions. The proofs of our results are based on the test function method and some integral estimates.



Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 322
Author(s):  
Ricardo Almeida ◽  
Ravi P. Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

A fractional model of the Hopfield neural network is considered in the case of the application of the generalized proportional Caputo fractional derivative. The stability analysis of this model is used to show the reliability of the processed information. An equilibrium is defined, which is generally not a constant (different than the case of ordinary derivatives and Caputo-type fractional derivatives). We define the exponential stability and the Mittag–Leffler stability of the equilibrium. For this, we extend the second method of Lyapunov in the fractional-order case and establish a useful inequality for the generalized proportional Caputo fractional derivative of the quadratic Lyapunov function. Several sufficient conditions are presented to guarantee these types of stability. Finally, two numerical examples are presented to illustrate the effectiveness of our theoretical results.



Author(s):  
Mokhtar Kirane ◽  
alrazi abdeljabbar

We first consider the nonlinear time fractional diffusion equation D^{1+α}u+D^β u−∆_{H} u=|u|^p posed on the Heisenberg group H, where 1 < p is a positive real nimber to be specified later; D^δ_{0|t} is the Liouville-Caputo derivative of order δ. For 0 < α < 1,0 < β ≤ 1. This equation interpolates the heat equation and the wave equation with the linear damping D^β_{0|t}u. We present the Fujita exponent for blow-up. Then establish sufficient conditions ensuring non-existence of local solutions. We extend the analysis to the case of the system D^{1+α}u+D^β u−∆_{H} u=|v|^q D^{1+δ}v+D^γ v−∆_{H} v=|u|^p. Our method of proof is based on the nonlinear capacity method.



2009 ◽  
Vol 16 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Mouffak Benchohra ◽  
Samira Hamani

Abstract The sufficient conditions are established for the existence of solutions for a class of boundary value problems for fractional differential equations involving the Caputo fractional derivative.



2016 ◽  
Vol 12 (11) ◽  
pp. 6807-6811
Author(s):  
Haribhau Laxman Tidke

We study the uniquenessof solutionfor nonlinear implicit fractional differential equation with initial condition involving Caputo fractional derivative. The technique used in our analysis is based on an application of Bihari and Medved inequalities.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mehboob Alam ◽  
Akbar Zada ◽  
Ioan-Lucian Popa ◽  
Alireza Kheiryan ◽  
Shahram Rezapour ◽  
...  

AbstractIn this work, we investigate the existence, uniqueness, and stability of fractional differential equation with multi-point integral boundary conditions involving the Caputo fractional derivative. By utilizing the Laplace transform technique, the existence of solution is accomplished. By applying the Bielecki-norm and the classical fixed point theorem, the Ulam stability results of the studied system are presented. An illustrative example is provided at the last part to validate all our obtained theoretical results.



Sign in / Sign up

Export Citation Format

Share Document