scholarly journals A Variant Cubic Exponential B-Spline Scheme with Shape Control

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3116
Author(s):  
Baoxing Zhang ◽  
Hongchan Zheng

This paper presents a variant scheme of the cubic exponential B-spline scheme, which, with two parameters, can generate curves with different shapes. This variant scheme is obtained based on the iteration from the generation of exponentials and a suitably chosen function. For such a scheme, we show its C2-convergence and analyze the effect of the parameters on the shape of the generated curves and also discuss its convexity preservation. In addition, a non-uniform version of this variant scheme is derived in order to locally control the shape of the generated curves. Numerical examples are given to illustrate the performance of the new schemes in this paper.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Baoxing Zhang ◽  
Hongchan Zheng ◽  
Lulu Pan

In this paper, a generalized cubic exponential B-spline scheme is presented, which can generate different kinds of curves, including the conics. Such a scheme is obtained by generalizing the cubic exponential B-spline scheme based on an iteration from the generation of exponential polynomials and a suitable function with two parameters μ and ν. By changing the values of μ and ν, the sensitivity of the shape of the subdivision curve to the initial control value v0 can be changed and different kinds of curves can then be obtained by adjusting the value of v0. For this new scheme, we show that, with any admissible choice of μ and ν, it owns the same smoothness order and support as the cubic exponential B-spline scheme. Besides, based on a different iteration and another suitable function, we construct a similar nonstationary scheme to generate more curves with different shapes and show the role of iterations and suitably chosen functions in the construction and analysis of such schemes. Several examples are given to illustrate the performance of our new schemes.


2020 ◽  
Vol 10 (1) ◽  
pp. 110-123
Author(s):  
Gaël Kermarrec ◽  
Hamza Alkhatib

Abstract B-spline curves are a linear combination of control points (CP) and B-spline basis functions. They satisfy the strong convex hull property and have a fine and local shape control as changing one CP affects the curve locally, whereas the total number of CP has a more general effect on the control polygon of the spline. Information criteria (IC), such as Akaike IC (AIC) and Bayesian IC (BIC), provide a way to determine an optimal number of CP so that the B-spline approximation fits optimally in a least-squares (LS) sense with scattered and noisy observations. These criteria are based on the log-likelihood of the models and assume often that the error term is independent and identically distributed. This assumption is strong and accounts neither for heteroscedasticity nor for correlations. Thus, such effects have to be considered to avoid under-or overfitting of the observations in the LS adjustment, i.e. bad approximation or noise approximation, respectively. In this contribution, we introduce generalized versions of the BIC derived using the concept of quasi- likelihood estimator (QLE). Our own extensions of the generalized BIC criteria account (i) explicitly for model misspecifications and complexity (ii) and additionally for the correlations of the residuals. To that aim, the correlation model of the residuals is assumed to correspond to a first order autoregressive process AR(1). We apply our general derivations to the specific case of B-spline approximations of curves and surfaces, and couple the information given by the different IC together. Consecutively, a didactical yet simple procedure to interpret the results given by the IC is provided in order to identify an optimal number of parameters to estimate in case of correlated observations. A concrete case study using observations from a bridge scanned with a Terrestrial Laser Scanner (TLS) highlights the proposed procedure.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
O. Tasbozan ◽  
A. Esen ◽  
N. M. Yagmurlu ◽  
Y. Ucar

A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made.


2004 ◽  
Vol 1 (2) ◽  
pp. 340-346
Author(s):  
Baghdad Science Journal

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.


1952 ◽  
Vol 19 (3) ◽  
pp. 263-266
Author(s):  
Ti-Chiang Lee

Abstract This paper presents an analytic solution of the stresses in a rotating disk of variable thickness. By introducing two parameters, the profile of the disk is assumed to vary exponentially with any power of the radial distance from the center of the disk. In some respects this solution may be considered as a generalization of Malkin’s solution, but it differs essentially from the latter in the method of solution. Here, the stresses are solved through a stress function instead of being solved directly. The required stress function is expressed in terms of confluent hypergeometric functions. Numerical examples are also shown for illustration.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Nokwethemba Precious Sibiya ◽  
Makwena Justice Moloto

AbstractEmploying a capping agent during the synthesis of nanoparticles has been reported to play a role in controlling size and shape of the nanoparticles. Due to this reason, this study reports the synthesis of silver selenide nanoparticles using different environmentally friendly capping agents (green tea, glucose, ascorbic acid and chitosan) in order to investigate their effect on the size and shape of the nanoparticles. Transmission electron microscopy (TEM) results showed that the nanoparticles have different shapes (rods, spheres and cubes) with an average size of 8–96 nm depending on the capping agent used. Fourier transformer infrared (FTIR) spectroscopy confirmed that the capping of nanoparticles was successful, while X-ray diffraction (XRD) showed that the nanoparticles have an orthorhombic phase.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2198
Author(s):  
Nikolaj Ezhov ◽  
Frank Neitzel ◽  
Svetozar Petrovic

In a series of three articles, spline approximation is presented from a geodetic point of view. In part 1, an introduction to spline approximation of 2D curves was given and the basic methodology of spline approximation was demonstrated using splines constructed from ordinary polynomials. In this article (part 2), the notion of B-spline is explained by means of the transition from a representation of a polynomial in the monomial basis (ordinary polynomial) to the Lagrangian form, and from it to the Bernstein form, which finally yields the B-spline representation. Moreover, the direct relation between the B-spline parameters and the parameters of a polynomial in the monomial basis is derived. The numerical stability of the spline approximation approaches discussed in part 1 and in this paper, as well as the potential of splines in deformation detection, will be investigated on numerical examples in the forthcoming part 3.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
M. Taghipour ◽  
H. Aminikhah

In this paper, a Crank–Nicolson finite difference scheme based on cubic B-spline quasi-interpolation has been derived for the solution of the coupled Burgers equations with the Caputo–Fabrizio derivative. The first- and second-order spatial derivatives have been approximated by first and second derivatives of the cubic B-spline quasi-interpolation. The discrete scheme obtained in this way constitutes a system of algebraic equations associated with a bi-pentadiagonal matrix. We show that the proposed scheme is unconditionally stable. Numerical examples are provided to verify the efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document