scholarly journals Genome-Inspired Chemical Exploration of Marine Fungus Aspergillus fumigatus MF071

Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 352
Author(s):  
Jianying Han ◽  
Miaomiao Liu ◽  
Ian D. Jenkins ◽  
Xueting Liu ◽  
Lixin Zhang ◽  
...  

The marine-derived fungus Aspergillus fumigatus MF071, isolated from sediment collected from the Bohai Sea, China, yielded two new compounds 19S,20-epoxy-18-oxotryprostatin A (1) and 20-hydroxy-18-oxotryprostatin A (2), in addition to 28 known compounds (3–30). The chemical structures were established on the basis of 1D, 2D NMR and HRESIMS spectroscopic data. This is the first report on NMR data of monomethylsulochrin-4-sulphate (4) and pseurotin H (10) as naturally occurring compounds. Compounds 15, 16, 20, 23, and 30 displayed weak antibacterial activity (minimum inhibitory concentration: 100 μg/mL). Compounds 18 and 19 exhibited strong activity against S. aureus (minimum inhibitory concentration: 6.25 and 3.13 μg/mL, respectively) and E. coli (minimum inhibitory concentration: 6.25 and 3.13 μg/mL, respectively). A genomic data analysis revealed the putative biosynthetic gene clusters ftm for fumitremorgins, pso for pseurotins, fga for fumigaclavines, and hel for helvolinic acid. These putative biosynthetic gene clusters fundamentally underpinned the enzymatic and mechanistic function study for the biosynthesis of these compounds. The current study reported two new compounds and biosynthetic gene clusters of fumitremorgins, pseurotins, fumigaclavines and helvolinic acid from Aspergillus fumigatus MF071.

2022 ◽  
Vol 9 ◽  
Author(s):  
Jun Tang ◽  
Xueshuang Huang ◽  
Ming-Hang Cao ◽  
Zhiyan Wang ◽  
Zhiyin Yu ◽  
...  

During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with β-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 μg/ml) as the positive control.


2017 ◽  
Vol 20 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
Kai Blin ◽  
Hyun Uk Kim ◽  
Marnix H Medema ◽  
Tilmann Weber

Abstract Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats such as rule-based BGC detection, sequence and annotation quality and cluster boundary prediction, which all have to be considered while planning for, performing and analyzing the results of genome mining studies.


2020 ◽  
Author(s):  
Jacob L. Steenwyk ◽  
Matthew E. Mead ◽  
Sonja L. Knowles ◽  
Huzefa A. Raja ◽  
Christopher D. Roberts ◽  
...  

AbstractAspergillus fumigatus is a major human pathogen that causes hundreds of thousands of infections yearly with high mortality rates. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the “cards of virulence” that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. Secondary metabolites and the biosynthetic gene clusters (BGCs) that typically encode them often vary within and between fungal species. To gain insight into whether secondary metabolism-associated cards of virulence vary between A. fumigatus, A. oerlinghausenensis, and A. fischeri, we conducted extensive genomic and secondary metabolite profiling analyses. By analyzing multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains, we identified both conserved and diverged secondary metabolism-associated cards of virulence. For example, we found that all species and strains examined biosynthesized the major virulence factor gliotoxin, consistent with the conservation of the gliotoxin BGC across genomes. However, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis; these differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light into the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.ImportanceThe major fungal pathogen Aspergillus fumigatus kills tens of thousands each year. In contrast, the two closest relatives of A. fumigatus, namely Aspergillus fischeri and Aspergillus oerlinghausenensis, are not considered pathogenic. A. fumigatus virulence stems, partly, from its ability to produce small molecules called secondary metabolites that have potent activities during infection. In this study, we examined whether A. fumigatus secondary metabolites and the metabolic pathways involved in their production are conserved in A. oerlinghausenensis and A. fischeri. We found that the nonpathogenic close relatives of A. fumigatus produce some, but not all, secondary metabolites thought to contribute to the success of A. fumigatus in causing human disease and that these similarities and differences were reflected in the underlying metabolic pathways involved in their biosynthesis. Compared to its nonpathogenic close relatives, A. fumigatus produces a distinct cocktail of secondary metabolites, which likely contributes to these organisms’ vastly different potentials to cause human disease. More broadly, the study of nonpathogenic organisms that have virulence-related traits, but are not currently considered agents of human disease, may facilitate the prediction of species capable of posing future threats to human health.


Molbank ◽  
10.3390/m1100 ◽  
2019 ◽  
Vol 2020 (1) ◽  
pp. M1100
Author(s):  
Elvira R. Shakurova ◽  
Lyudmila V. Parfenova

The paper presents the results on the one-pot pyridine quaternization using betulinic 28-O-methyl ester (1) and Tempo+Br3− cation followed by reduction of the resulting salt (2) to 1,2,5,6-tetrahydropyridine derivative (3). The structures of new compounds are confirmed by means of 1D and 2D-NMR spectroscopy, as well as MALDI TOF/TOF spectrometry. The derivatives 2 and 3 are active against S. aureus at the minimum inhibitory concentration (MIC) of 4 μg/mL and 16 μg/mL, correspondingly.


2020 ◽  
Author(s):  
Rafael Popin ◽  
Danillo Alvarenga ◽  
Raquel Castelo-Branco ◽  
David Fewer ◽  
Kaarina Sivonen

Abstract Background Microbial natural products have unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters to produce natural products. Several studies have mapped the distribution of natural product biosynthetic gene clusters in cyanobacterial genomes. However, little attention has been paid to natural product biosynthesis in plasmids. Some genes encoding cyanobacterial natural product biosynthetic pathways are believed to be dispersed by plasmids through horizontal gene transfer. Thus, we examined complete cyanobacterial genomes to assess if plasmids are involved in the production and dissemination of natural products by cyanobacteria.Results The 185 analyzed genomes possessed 1 to 42 gene clusters and an average of 10. In total, 1816 biosynthetic gene clusters were found. Approximately 95% of these clusters were present in chromosomes. The remaining 5% were present in plasmids, from which homologs of the biosynthetic pathways for aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin were manually curated. The cryptophycin pathway was previously described as active while the other gene cluster include all genes for biosynthesis. Approximately 12% of the 424 analyzed cyanobacterial plasmids contained homologs of genes involved in conjugation. Large plasmids, previously named as “chromids”, were also observed to be widespread in cyanobacteria. Sixteen cryptic natural product biosynthetic gene clusters and geosmin biosynthetic gene clusters were located in those mobile plasmids.Conclusion Homologues of genes involved in the production of toxins, protease inhibitors, odorous compounds, antimicrobials, antitumorals, and other unidentified natural products are located in cyanobacterial plasmids. Some of these plasmids are predicted to be conjugative. The present study provides in silico evidence that plasmids are involved in the distribution of natural product biosynthetic pathways in cyanobacteria.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4973
Author(s):  
Muhammad Fazle Rabbee ◽  
Kwang-Hyun Baek

Since the discovery of penicillin, bacteria are known to be major sources of secondary metabolites that can function as drugs or pesticides. Scientists worldwide attempted to isolate novel compounds from microorganisms; however, only less than 1% of all existing microorganisms have been successfully identified or characterized till now. Despite the limitations and gaps in knowledge, in recent years, many Bacillus velezensis isolates were identified to harbor a large number of biosynthetic gene clusters encoding gene products for the production of secondary metabolites. These chemically diverse bioactive metabolites could serve as a repository for novel drug discovery. More specifically, current projects on whole-genome sequencing of B. velezensis identified a large number of biosynthetic gene clusters that encode enzymes for the synthesis of numerous antimicrobial compounds, including lipopeptides and polyketides; nevertheless, their biological applications are yet to be identified or established. In this review, we discuss the recent research on synthesis of bioactive compounds by B. velezensis and related Bacillus species, their chemical structures, bioactive gene clusters of interest, as well as their biological applications for effective plant disease management.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


Sign in / Sign up

Export Citation Format

Share Document