scholarly journals Structural Similarities between Some Common Fluorophores Used in Biology, Marketed Drugs, Endogenous Metabolites, and Natural Products

Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 582
Author(s):  
Steve O’Hagan ◽  
Douglas B. Kell

It is known that at least some fluorophores can act as ‘surrogate’ substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the ‘natural’ substrates of ‘orphan’ transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly ‘drug-like’, and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores along with standard fingerprinting methods and the Tanimoto similarity metric. Results: The great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug, as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the “quantitative estimate of drug likeness” technique. It is concluded that this set of fluorophores does overlap with a significant part of both the drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.

2019 ◽  
Author(s):  
Steve O’Hagan ◽  
Douglas B. Kell

ABSTRACTBackgroundIt is known that at least some fluorophores can act as ‘surrogate’ substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the ‘natural’ substrates of ‘orphan’ transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly ‘drug-like’, and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores.ResultsThe great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the “quantitative estimate of drug likeness” technique. It is concluded that this set of fluorophores does overlap a significant part of both drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.


ADMET & DMPK ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 85 ◽  
Author(s):  
Steve O'Hagan ◽  
Douglas Bruce Kell

<p class="ADMETabstracttext">We compare several molecular fingerprint encodings for marketed, small molecule drugs, and assess how their <span style="text-decoration: underline;">rank order</span> varies with the fingerprint in terms of the Tanimoto similarity to the most similar endogenous human metabolite as taken from Recon2. For the great majority of drugs, the rank order varies <span style="text-decoration: underline;">very greatly</span> depending on the encoding used, and also somewhat when the Tanimoto similarity (TS) is replaced by the Tversky similarity. However, for a subset of such drugs, amounting to some 10 % of the set and a Tanimoto similarity of ~0.8 or greater, the similarity coefficient is relatively robust to the encoding used. This leads to a metric that, while arbitrary, suggests that a Tanimoto similarity of 0.75-0.8 or greater genuinely does imply a considerable structural similarity of two molecules in the drug-endogenite space. Although comparatively few (&lt;10 % of) marketed drugs are, in this sense, <span style="text-decoration: underline;">robustly</span> similar to an endogenite, there is often at least one encoding with which they <span style="text-decoration: underline;">are</span> genuinely similar (e.g. TS &gt; 0.75). This is referred to as the Take Your Pick Improved Cheminformatic Analytical Likeness or TYPICAL encoding, and on this basis some 66 % of drugs are within a TS of 0.75 to an endogenite.</p><p class="ADMETabstracttext">We next explicitly recognise that natural evolution will have selected for the ability to transport <span style="text-decoration: underline;">dietary</span> substances, including plant, animal and microbial ‘secondary’ metabolites, that are of benefit to the host. These should also be explored in terms of their closeness to marketed drugs. We thus compared the TS of marketed drugs with the contents of various databases of natural products. When this is done, we find that some 80 % of marketed drugs are within a TS of 0.7 to a natural product, even using just the MACCS encoding. For patterned and TYPICAL encodings, 80 % and 98 % of drugs are within a TS of 0.8 to (an endogenite or) an exogenous natural product. This implies strongly that it is these <span style="text-decoration: underline;">exogeneous</span> (dietary and medicinal) natural products that are more to be seen as the ‘natural’ substrates of drug transporters (as is recognised, for instance, for the solute carrier SLC22A4 and ergothioneine). This novel analysis casts an entirely different light on the kinds of natural molecules that are to be seen as most like marketed drugs, and hence potential transporter substrates, and further suggests that a renewed exploitation of natural products as drug scaffolds would be amply rewarded.</p><em><span><br /></span></em>


2017 ◽  
Author(s):  
Steve O’Hagan ◽  
Douglas B. Kell

AbstractWe compare several molecular fingerprint encodings for marketed, small molecule drugs, and assess how their rank order varies with the fingerprint in terms of the Tanimoto similarity to the most similar endogenous human metabolite as taken from Recon2. For the great majority of drugs, the rank order varies very greatly depending on the encoding used, and also somewhat when the Tanimoto similarity (TS) is replaced by the Tversky similarity. However, for a subset of such drugs, amounting to some 10% of the set and a Tanimoto similarity of ~0.8 or greater, the similarity coefficient is relatively robust to the encoding used. This leads to a metric that, while arbitrary, suggests that a Tanimoto similarity of 0.75-0.8 or greater genuinely does imply a considerable structural similarity of two molecules in the drug-endogenite space. Although comparatively few (<10% of) marketed drugs are, in this sense, robustly similar to an endogenite, there is often at least one encoding with which they are genuinely similar (e.g. TS > 0.75). This is referred to as the Take Your Pick Improved Cheminformatic Analytical Likeness or TYPICAL encoding, and on this basis some 66% of drugs are within a TS of 0.75 to an endogenite.We next explicitly recognise that natural evolution will have selected for the ability to transport dietary substances, including plant, animal and microbial ‘secondary’ metabolites, that are of benefit to the host. These should also be explored in terms of their closeness to marketed drugs. We thus compared the TS of marketed drugs with the contents of various databases of natural products. When this is done, we find that some 80% of marketed drugs are within a TS of 0.7 to a natural product, even using just the MACCS encoding. For patterned and TYPICAL encodings, 80% and 98% of drugs are within a TS of 0.8 to (an endogenite or) an exogenous natural product. This implies strongly that it is these exogeneous (dietary and medicinal) natural products that are more to be seen as the ‘natural’ substrates of drug transporters (as is recognised, for instance, for the solute carrier SLC22A4 and ergothioneine). This novel analysis casts an entirely different light on the kinds of natural molecules that are to be seen as most like marketed drugs, and hence potential transporter substrates, and further suggests that a renewed exploitation of natural products as drug scaffolds would be amply rewarded.


2016 ◽  
Vol 113 (9) ◽  
pp. 2526-2531 ◽  
Author(s):  
Sibongile Mafu ◽  
Meirong Jia ◽  
Jiachen Zi ◽  
Dana Morrone ◽  
Yisheng Wu ◽  
...  

The substrate specificity of enzymes from natural products’ metabolism is a topic of considerable interest, with potential biotechnological use implicit in the discovery of promiscuous enzymes. However, such studies are often limited by the availability of substrates and authentic standards for identification of the resulting products. Here, a modular metabolic engineering system is used in a combinatorial biosynthetic approach toward alleviating this restriction. In particular, for studies of the multiply reactive cytochrome P450, ent-kaurene oxidase (KO), which is involved in production of the diterpenoid plant hormone gibberellin. Many, but not all, plants make a variety of related diterpenes, whose structural similarity to ent-kaurene makes them potential substrates for KO. Use of combinatorial biosynthesis enabled analysis of more than 20 such potential substrates, as well as structural characterization of 12 resulting unknown products, providing some insight into the underlying structure–function relationships. These results highlight the utility of this approach for investigating the substrate specificity of enzymes from complex natural products’ biosynthesis.


Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
B. Pilón-Jiménez ◽  
Fernanda Saldívar-González ◽  
Bárbara Díaz-Eufracio ◽  
José Medina-Franco

Compound databases of natural products have a major impact on drug discovery projects and other areas of research. The number of databases in the public domain with compounds with natural origins is increasing. Several countries, Brazil, France, Panama and, recently, Vietnam, have initiatives in place to construct and maintain compound databases that are representative of their diversity. In this proof-of-concept study, we discuss the first version of BIOFACQUIM, a novel compound database with natural products isolated and characterized in Mexico. We discuss its construction, curation, and a complete chemoinformatic characterization of the content and coverage in chemical space. The profile of physicochemical properties, scaffold content, and diversity, as well as structural diversity based on molecular fingerprints is reported. BIOFACQUIM is available for free.


2007 ◽  
Vol 87 ◽  
pp. 220-258
Author(s):  
Nigel Saul

A comprehensive study is attempted of the pre-1600 monuments in St George's Chapel, Windsor Castle. Use is made for the first time of a key source, the set of plans of the chapel floors made by Henry Emlyn in 1789. These show the chapel once W have contained a large collection of monumental brasses. The plans are examined alongside the evidence of the extant indents in the chapel and cloister to reconstruct the original lay-out of the brasses. It is demonstrated that the great majority of the brasses commemorated the deans and canons who served the chapel. It is argued that the character of the chapel as a mausoleum changed after 1475, when Edward IV embarked on the building of the present fabric. From this time, the ranks of the commemorated expanded to include layfolk, particularly Knights of the Garter and men with royal connections, while, alongside the brasses, big sculpted monuments were commissioned in the side chapels of the building.


Synthesis ◽  
2019 ◽  
Vol 51 (07) ◽  
pp. 1545-1560 ◽  
Author(s):  
Ronaldo Pilli ◽  
Franco Della-Felice ◽  
Francisco de Assis ◽  
Ariel Sarotti

A comprehensive study on the stereochemical outcome of palladium-catalyzed formation of 2,4,6-trisubstituted tetrahydropyrans through cyclization of the corresponding allylic acetates using both Pd(0) and Pd(II) catalysts is presented. We have found that the stereochemical outcome of this cyclization is dependent not only on the ­stereochemistry of the acyclic precursor but also on the nature of the palladium catalyst. These results were applied to the total synthesis of the putative structure of cryptoconcatone H. Experimental and computational DP4+ NMR results were used to assess the structures proposed for cryptoconcatones K and L.


2007 ◽  
Vol 7 (4) ◽  
pp. 389-409 ◽  
Author(s):  
Giovanni Zappia ◽  
Pilar Menendez ◽  
Giuliano Delle Monache ◽  
Domenico Misiti ◽  
Laura Nevola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document