scholarly journals Sustainable Fabrication of Organic Solvent Nanofiltration Membranes

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Hai Yen Nguyen Thi ◽  
Bao Tran Duy Nguyen ◽  
Jeong F. Kim

Organic solvent nanofiltration (OSN) has been considered as one of the key technologies to improve the sustainability of separation processes. Recently, apart from enhancing the membrane performance, greener fabricate on of OSN membranes has been set as a strategic objective. Considerable efforts have been made aiming to improve the sustainability in membrane fabrication, such as replacing membrane materials with biodegradable alternatives, substituting toxic solvents with greener solvents, and minimizing waste generation with material recycling. In addition, new promising fabrication and post-modification methods of solvent-stable membranes have been developed exploiting the concept of interpenetrating polymer networks, spray coating, and facile interfacial polymerization. This review compiles the recent progress and advances for sustainable fabrication in the field of polymeric OSN membranes.

2021 ◽  
Author(s):  
Hang Mei ◽  
Huajing Liu ◽  
Qianqian Shang ◽  
Ying Dong ◽  
Stig Pedersen-Bjergaard ◽  
...  

A versatile organic-solvent-free electromembrane extraction (EME) system, which could be successfully used for the extraction of both basic and acidic analytes, is proposed based on semi-interpenetrating polymer networks.


2020 ◽  
Vol 8 (31) ◽  
pp. 15891-15899 ◽  
Author(s):  
Chenxu Wang ◽  
Chenxuan Li ◽  
Evan R. C. Rutledge ◽  
Sai Che ◽  
Jongbok Lee ◽  
...  

Organic solvent nanofiltration (OSN) membranes composed of aromatic porous polymer networks are fabricated by in situ cross-linking. They exhibit excellent chemical/structural stability, molecular-sieving selectivity, and high permeability for OSN.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1716
Author(s):  
Su-Min Kim ◽  
Sena Hong ◽  
Bao-Tran Duy Nguyen ◽  
Hai-Yen Nguyen Thi ◽  
Sang-Hee Park ◽  
...  

Thin film composite (TFC) membranes is the dominant type of desalination in the field of membrane technology. Most of the TFC membranes are fabricated via interfacial polymerization (IP) technique. The ingenious chemistry of reacting acyl chlorides with diamines at the interface between two immiscible phases was first suggested by Cadotte back in the 1980s, and is still the main chemistry employed now. Researchers have made incremental improvements by incorporating various organic and inorganic additives. However, most of the TFC membrane literature are focused on improving the water desalination performance. Recently, the application spectrum of membrane technology has been expanding from the aqueous environment to harsh solvent environments, now commonly known as Organic Solvent Nanofiltration (OSN) technology. In this work, some of the main additives widely used in the desalination TFC membranes were applied to OSN TFC membranes. It was found that tributyl phosphate (TBP) can improve the solubility of diamine monomer in the organic phase, and sodium dodecyl sulfate (SDS) surfactant can effectively stabilize the IP reaction interface. Employing both TBP and SDS exhibited synergistic effect that improved the membrane permeance and rejection in solvent environments.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiefan Huang ◽  
Basem A. Moosa ◽  
Phuong Hoang ◽  
Jiangtao Liu ◽  
Stefan Chisca ◽  
...  

AbstractEngineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.


Sign in / Sign up

Export Citation Format

Share Document