scholarly journals Comparison of Nanofiltration with Reverse Osmosis in Reclaiming Tertiary Treated Municipal Wastewater for Irrigation Purposes

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
MhdAmmar Hafiz ◽  
Alaa H. Hawari ◽  
Radwan Alfahel ◽  
Mohammad K. Hassan ◽  
Ali Altaee

This study compares the performance of nanofiltration (NF) and reverse osmosis (RO) for the reclamation of ultrafiltered municipal wastewater for irrigation of food crops. RO and NF technologies were evaluated at different applied pressures; the performance of each technology was evaluated in terms of water flux, recovery rate, specific energy consumption and quality of permeate. It was found that the permeate from the reverse osmosis (RO) process complied with Food and Agriculture Organization (FAO) standards at pressures applied between 10 and 18 bar. At an applied pressure of 20 bar, the permeate quality did not comply with irrigation water standards in terms of chloride, sodium and calcium concentration. It was found that nanofiltration process was not suitable for the reclamation of wastewater as the concentration of chloride, sodium and calcium exceeded the allowable limits at all applied pressures. In the reverse osmosis process, the highest recovery rate was 36%, which was achieved at a pressure of 16 bar. The specific energy consumption at this applied pressure was 0.56 kWh/m3. The lowest specific energy of 0.46 kWh/m3 was achieved at an applied pressure of 12 bar with a water recovery rate of 32.7%.

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 173
Author(s):  
Abdeljalil Chougradi ◽  
François Zaviska ◽  
Ahmed Abed ◽  
Jérôme Harmand ◽  
Jamal-Eddine Jellal ◽  
...  

As world demand for clean water increases, reverse osmosis (RO) desalination has emerged as an attractive solution. Continuous RO is the most used desalination technology today. However, a new generation of configurations, working in unsteady-state feed concentration and pressure, have gained more attention recently, including the batch RO process. Our work presents a mathematical modeling for batch RO that offers the possibility of monitoring all variables of the process, including specific energy consumption, as a function of time and the recovery ratio. Validation is achieved by comparison with data from the experimental set-up and an existing model in the literature. Energetic comparison with continuous RO processes confirms that batch RO can be more energy efficient than can continuous RO, especially at a higher recovery ratio. It used, at recovery, 31% less energy for seawater and 19% less energy for brackish water. Modeling also proves that the batch RO process does not have to function under constant flux to deliver good energetic performance. In fact, under a linear pressure profile, batch RO can still deliver better energetic performance than can a continuous configuration. The parameters analysis shows that salinity, pump and energy recovery devices efficiencies are directly linked to the energy demand. While increasing feed volume has a limited effect after a certain volume due to dilution, it also shows, interestingly, a recovery ratio interval in which feed volume does not affect specific energy consumption.


2020 ◽  
Vol 20 (8) ◽  
pp. 3096-3106
Author(s):  
Simeng Li ◽  
Karla Duran ◽  
Saied Delagah ◽  
Joe Mouawad ◽  
Xudong Jia ◽  
...  

Abstract Reverse osmosis (RO) technologies have been widely implemented around the world to address the rising severity of freshwater scarcity. As desalination capacity increases, reducing the energy consumption of the RO process per permeate volume (i.e., specific energy consumption) is of particular importance. In this study, numerical models are used to characterize and compare the energy efficiency of one-stage continuous RO, multi-stage continuous RO, and closed-circuit RO (CCRO) processes. The simulated results across a broad range of feed salinity (5,000–50,000 ppm, i.e., 5–50 g kg−1) and recovery (40%–95%) demonstrate that, compared with the most common one-stage continuous RO, two-stage and three-stage continuous RO can reduce the specific energy consumption by up to 40.9% and 53.6%, respectively, while one-stage and two-stage CCRO can lead to 45.0% and 67.5% reduction, respectively. The differences in energy efficiencies of various RO configurations are more salient when desalinating high-salinity feed at a high recovery ratio. From the standpoints of energy saving and capital cost, the simulated results indicate that multi-stage CCRO is an optimal desalination process with great potential for practical implementation.


2020 ◽  
Vol 6 (6) ◽  
pp. 1538-1552 ◽  
Author(s):  
Mukta Hardikar ◽  
Itzel Marquez ◽  
Andrea Achilli

In energy efficient membrane distillation, the low transmembrane temperature difference exacerbates salinity's effect on water flux and specific energy consumption.


Author(s):  
Salatiel Wohlmuth da Silva ◽  
Carla Venzke ◽  
Júlia Bitencourt Welter ◽  
Daniela Schneider ◽  
Jane Zoppas Ferreira ◽  
...  

This work evaluated the performance of an electrochemical oxidation process (EOP), using boron-doped diamond on niobium substrate (Nb/BDD), for the treatment of a reverse osmosis concentrate (ROC) produced from a petrochemical wastewater. The effects of applied current density (5, 10, or 20 mA·cm−2) and oxidation time (0 to 5 h) were evaluated following changes in chemical oxygen demand (COD) and total organic carbon (TOC). Current efficiency and specific energy consumption were also evaluated. Besides, the organic byproducts generated by EOP were analyzed by gas chromatography coupled to mass spectrometry (GC–MS). The results show that current densities and oxidation time lead to a COD and TOC reduction. For the 20 mA·cm−2, changes in the kinetic regime were found at 3 h and associated to the oxidation of inorganic ions by chlorinated species. After 3 h, the oxidants act in the organic oxidation, leading to a TOC removal of 71%. Although, due to the evolution of parallel reactions (O2, H2O2, and O3), the specific energy consumption also increased, the resulting consumption value of 66.5 kW·h·kg−1 of COD is considered a low energy requirement representing lower treatment costs. These results encourage the applicability of EOP equipped with Nb/BDD as a treatment process for the ROC.


Sign in / Sign up

Export Citation Format

Share Document