scholarly journals Effect of Mobile Carrier on the Performance of PVAm–Nanocellulose Facilitated Transport Membranes for CO2 Capture

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 442
Author(s):  
Riccardo Casadei ◽  
Elham Firouznia ◽  
Marco Giacinti Baschetti

Facilitated transport membranes obtained by coupling polyvinylamine with highly charged carboxymethylated nanocellulose fibers were studied considering both water sorption and gas permeation experiments. In particular, the effect of the L-arginine as a mobile carrier was investigated to understand possible improvements in CO2 transport across the membranes. The results show that L-arginine addition decreases the water uptake of the membrane, due to the lower polyvinylamine content, but was able to improve the CO2 transport. Tests carried on at 35 °C and high relative humidity indeed showed an increase of both CO2 permeability and selectivity with respect to nitrogen and methane. In particular, the CO2 permeability increased from 160 to about 340 Barrer when arginine loading was increased from 0 to 45 wt%. In the same conditions, selectivity with respect to nitrogen was more than doubled, increasing from 20 to 45. Minor improvements were instead obtained with respect to methane; CO2/CH4 selectivity, indeed, even in presence of the mobile carrier, was limited to about 20.

2020 ◽  
Author(s):  
Minli Wang ◽  
Yiqun Chen ◽  
Heyun Fu ◽  
Xiaolei Qu ◽  
Bengang Li ◽  
...  

Abstract. The hygroscopic behavior of black carbon (BC) has a significant impact on global and regional climate change. However, the mechanism and factors controlling the hygroscopicity of BC from different carbon sources are not well understood. Here, we systematically measured the equilibrium and kinetics of water uptake by 15 different BC (10 herb-derived BC, 2 wood-derived BC, and 3 soot) using gravimetric water vapor sorption method combined with in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In the gravimetric analysis, the sorption/desorption equilibrium isotherms were measured under continuous-stepwise water vapor pressure conditions, while the kinetics was measured at a variety of humidity levels obtained by different saturated aqueous salt solutions. The equilibrium water uptake of the BC pool at high relative humidity (> 80 %) positively correlated to the dissolved mineral content (0.01–13.0 wt %) (R2 = 0.86, P = 0.0001) as well as the content of the thermogravimetrically analyzed organic carbon (OCTGA, 4.48–15.25 wt %) (R2 = 0.52, P = 0.002) and the alkali-extracted organic carbon (OCAE, 0.14–8.39 wt %) (R2 = 0.80, P = 0.0001). In contrast, no positive correlation was obtained with the content of total organic carbon or elemental carbon. Among the major soluble ionic constituents, chloride and ammonium were each correlated with the equilibrium water uptake at high relative humidity. Compared with the herbal BC and soot, the woody BC had much lower equilibrium water uptake, especially at high relative humidity, likely due to the very low dissolved material content and OC content. The DRIFTS analysis provided generally consistent results at low relative humidity. The kinetics of water uptake (measured by pseudo-second order rate constant) correlated to the content of OCTGA and OCAE as well as the content of chloride and ammonium at low relative humidity (33 %), but to the porosity of bulk BC at high relative humidity (94 %). This was the first study to show that BC of different types and sources has greatly varying hygroscopic properties.


2020 ◽  
Vol 20 (13) ◽  
pp. 7941-7954
Author(s):  
Minli Wang ◽  
Yiqun Chen ◽  
Heyun Fu ◽  
Xiaolei Qu ◽  
Bengang Li ◽  
...  

Abstract. The hygroscopic behavior of black carbon (BC)-containing particles (BCPs) has a significant impact on global and regional climate change. However, the mechanism and factors controlling the hygroscopicity of BCPs from different carbon sources are not well understood. Here, we systematically measured the equilibrium and kinetics of water uptake by 15 different BCPs (10 herb-derived BCPs, 2 wood-derived BCPs, and 3 soot-type BCPs) using a gravimetric water vapor sorption method combined with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In the gravimetric analysis, the sorption–desorption equilibrium isotherms were measured under continuous-stepwise water vapor pressure conditions, while the kinetics was measured at a variety of humidity levels obtained by different saturated aqueous salt solutions. The equilibrium water uptake of the tested group of BCPs at high relative humidity (>80 %) positively correlated to the dissolved mineral content (0.01–13.0 wt %) (R2=0.86, P=0.0001), the content of the thermogravimetrically analyzed organic carbon (OCTGA, 4.48–15.25 wt %) (R2=0.52, P=0.002), and the content of the alkali-extracted organic carbon (OCAE, 0.14–8.39 wt %) (R2=0.80, P=0.0001). In contrast, no positive correlation was obtained with the content of total organic carbon or elemental carbon. Among the major soluble ionic constituents, chloride and ammonium were each correlated with the equilibrium water uptake at high relative humidity. Compared with the herbal BCPs and soot, the woody BCPs had much lower equilibrium water uptake, especially at high relative humidity, likely due to the very low dissolved mineral content and OC content. The DRIFTS analysis provided generally consistent results at low relative humidity. The kinetics of water uptake (measured by pseudo-second-order rate constant) correlated to the content of OCTGA and OCAE as well as the content of chloride and ammonium at low relative humidity (33 %) but to the porosity of BCPs at high relative humidity (94 %). This was the first study to show that BCPs of different types and sources had greatly varying hygroscopic properties.


2013 ◽  
Vol 35 (1) ◽  
pp. 92-98 ◽  
Author(s):  
Glauciana da Mata Ataíde ◽  
Eduardo Euclydes de Lima e Borges ◽  
José Francisco de Carvalho Gonçalves ◽  
Valéria Monteze Guimarães ◽  
Elisa Monteze Bicalho ◽  
...  

Germination is a process that begins with seed water uptake, stimulating enzyme synthesis or activating enzymes already present. The objective of this study was to evaluate variations in monosaccharide reserves and the activities of the α-galactosidase and polygalacturonase enzymes during the hydration of two lots of Dalbergia nigra (Bahia Rosewood) seeds. Seeds from different origins constituted the two lots I and II, classified as high and low vigor, respectively. Both lots were placed in desiccators with a high relative humidity to hydrate and at 15 and 25 °C until levels of 10, 15, 20 and 25% moisture levels in seeds were reached. The seed cotyledons were analyzed for the quantity of monosaccharides and enzyme activity. The control had higher concentrations of xylose and rhamnose, which decreased during hydration until the 15% level was reached, after which concentrations increased again in both lots. Lot I, with a superior quality, showed higher glucose synthesis and degradation during seed hydration. Both enzymes were pre-existing since activity was already present in the seeds without imbibition. The polygalacturonase enzyme increased and the α-galactosidase enzyme remained relatively constant during seed hydration.


2014 ◽  
Vol 42 (8) ◽  
pp. 879-884 ◽  
Author(s):  
Rosa López-Gigosos ◽  
Alberto Mariscal ◽  
Mario Gutierrez-Bedmar ◽  
Eloisa Mariscal-Lopez ◽  
Joaquín Fernández-Crehuet

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ata Ur Rehman ◽  
Muhammad Zahir Shah ◽  
Shehla Rasheed ◽  
Wasim Afzal ◽  
Muhammad Arsalan ◽  
...  

Abstract Salt hydrates (MgSO4 and ZnSO4) impregnated in zeolites, offer a variety of improvements, mostly providing a large surface area for salt hydrates and water molecules. A composite of 5 and 10% of salt contents were prepared as heat storage materials. The study’s finding showed that dehydration enthalpy of MgSO4 (1817 J g−1) and ZnSO4 (1586 J g−1) were 10 and 15% improved than pure salt hydrates by making composites. During the hydration process of composites, the water sorption is 30–37% improved and further the increasing of salt contents in composites enhances more 10% increase in the water resorption. The cyclicability of MgSO4/zeolite and ZnSO4/zeolite were 45 and 51% improved than their corresponding pure salt hydrates. The effect of humidity on the water sorption result reveals that composites of MgSO4/zeolite and ZnSO4/zeolite at 75% relative humidity (RH), the mass of water are 51 and 40% increase than 55% RH.


1984 ◽  
Vol 52 (1) ◽  
pp. 86-86 ◽  
Author(s):  
William Lichten ◽  
Paul McGrath

2021 ◽  
Author(s):  
Maria Ángeles Burgos Simón ◽  
Elisabeth Andrews ◽  
Gloria Titos ◽  
Angela Benedetti ◽  
Huisheng Bian ◽  
...  

<p>The particle hygroscopic growth impacts the optical properties of aerosols and, in turn, affects the aerosol-radiation interaction and calculation of the Earth’s radiative balance. The dependence of particle light scattering on relative humidity (RH) can be described by the scattering enhancement factor f(RH), defined as the ratio between the particle light scattering coefficient at a given RH divided by its dry value.</p><p>The first effort of the AeroCom Phase III – INSITU experiment was to develop an observational dataset of scattering enhancement values at 26 sites to study the uptake of water by atmospheric aerosols, and evaluate f(RH) globally (Burgos et al., 2019). Model outputs from 10 Earth System Models (CAM, CAM-ATRAS, CAM-Oslo, GEOS-Chem, GEOS-GOCART, MERRAero, TM5, OsloCTM3, IFS-AER, and ECMWF) were then evaluated against this in-situ dataset. Building on these results, we investigate f(RH) in the context of other aerosol optical and chemical properties, making use of the same 10 Earth System Models (ESMs) and in-situ measurements as in Burgos et al. (2020) and Titos et al. (2021).</p><p>Given the difficulties of deploying and maintaining instrumentation for long-term, accurate and comprehensive f(RH) observations, it is desirable to find an observational proxy for f(RH). This observation-based proxy would also need to be reproduced in modelling space. Our aim here is to evaluate how ESMs currently represent the relationship between f(RH), scattering Ångström exponent (SAE), and single scattering albedo (SSA). This work helps to identify current challenges in modelling water-uptake by aerosols and their impact on aerosol optical properties within Earth system models.</p><p>We start by analyzing the behavior of SSA with RH, finding the expected increase with RH for all site types and models. Then, we analyze the three variables together (f(RH)-SSA-SAE relationship). Results show that hygroscopic particles tend to be bigger and scatter more than non-hygroscopic small particles, though variability within models is noticeable. This relationship can be further studied by relating SAE to model chemistry, by selecting those grid points dominated by a single chemical component (mass mixing ratios > 90%). Finally, we analyze model performance at three specific sites representing different aerosol types: Arctic, marine and rural. At these sites, the model data can be exactly temporally and spatially collocated with the observations, which should help to identify the models which exhibit better agreement with measurements and for which aerosol type.</p><p> </p><p>Burgos, M.A. et al.: A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 6, 157. https://doi.org/10.1038/s41597-019-0158-7, 2019.</p><p>Burgos, M.A. et al.: A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity, Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, 2020.</p><p>Titos, G. et al.: A global study of hygroscopicity-driven light scattering enhancement in the context of other in-situ aerosol optical properties, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1250, in review, 2020.</p>


Sign in / Sign up

Export Citation Format

Share Document