scholarly journals An investigation on hygroscopic properties of 15 black carbon (BC) from different carbon sources: Roles of organic and inorganic components

2020 ◽  
Author(s):  
Minli Wang ◽  
Yiqun Chen ◽  
Heyun Fu ◽  
Xiaolei Qu ◽  
Bengang Li ◽  
...  

Abstract. The hygroscopic behavior of black carbon (BC) has a significant impact on global and regional climate change. However, the mechanism and factors controlling the hygroscopicity of BC from different carbon sources are not well understood. Here, we systematically measured the equilibrium and kinetics of water uptake by 15 different BC (10 herb-derived BC, 2 wood-derived BC, and 3 soot) using gravimetric water vapor sorption method combined with in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In the gravimetric analysis, the sorption/desorption equilibrium isotherms were measured under continuous-stepwise water vapor pressure conditions, while the kinetics was measured at a variety of humidity levels obtained by different saturated aqueous salt solutions. The equilibrium water uptake of the BC pool at high relative humidity (> 80 %) positively correlated to the dissolved mineral content (0.01–13.0 wt %) (R2 = 0.86, P = 0.0001) as well as the content of the thermogravimetrically analyzed organic carbon (OCTGA, 4.48–15.25 wt %) (R2 = 0.52, P = 0.002) and the alkali-extracted organic carbon (OCAE, 0.14–8.39 wt %) (R2 = 0.80, P = 0.0001). In contrast, no positive correlation was obtained with the content of total organic carbon or elemental carbon. Among the major soluble ionic constituents, chloride and ammonium were each correlated with the equilibrium water uptake at high relative humidity. Compared with the herbal BC and soot, the woody BC had much lower equilibrium water uptake, especially at high relative humidity, likely due to the very low dissolved material content and OC content. The DRIFTS analysis provided generally consistent results at low relative humidity. The kinetics of water uptake (measured by pseudo-second order rate constant) correlated to the content of OCTGA and OCAE as well as the content of chloride and ammonium at low relative humidity (33 %), but to the porosity of bulk BC at high relative humidity (94 %). This was the first study to show that BC of different types and sources has greatly varying hygroscopic properties.

2020 ◽  
Vol 20 (13) ◽  
pp. 7941-7954
Author(s):  
Minli Wang ◽  
Yiqun Chen ◽  
Heyun Fu ◽  
Xiaolei Qu ◽  
Bengang Li ◽  
...  

Abstract. The hygroscopic behavior of black carbon (BC)-containing particles (BCPs) has a significant impact on global and regional climate change. However, the mechanism and factors controlling the hygroscopicity of BCPs from different carbon sources are not well understood. Here, we systematically measured the equilibrium and kinetics of water uptake by 15 different BCPs (10 herb-derived BCPs, 2 wood-derived BCPs, and 3 soot-type BCPs) using a gravimetric water vapor sorption method combined with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In the gravimetric analysis, the sorption–desorption equilibrium isotherms were measured under continuous-stepwise water vapor pressure conditions, while the kinetics was measured at a variety of humidity levels obtained by different saturated aqueous salt solutions. The equilibrium water uptake of the tested group of BCPs at high relative humidity (>80 %) positively correlated to the dissolved mineral content (0.01–13.0 wt %) (R2=0.86, P=0.0001), the content of the thermogravimetrically analyzed organic carbon (OCTGA, 4.48–15.25 wt %) (R2=0.52, P=0.002), and the content of the alkali-extracted organic carbon (OCAE, 0.14–8.39 wt %) (R2=0.80, P=0.0001). In contrast, no positive correlation was obtained with the content of total organic carbon or elemental carbon. Among the major soluble ionic constituents, chloride and ammonium were each correlated with the equilibrium water uptake at high relative humidity. Compared with the herbal BCPs and soot, the woody BCPs had much lower equilibrium water uptake, especially at high relative humidity, likely due to the very low dissolved mineral content and OC content. The DRIFTS analysis provided generally consistent results at low relative humidity. The kinetics of water uptake (measured by pseudo-second-order rate constant) correlated to the content of OCTGA and OCAE as well as the content of chloride and ammonium at low relative humidity (33 %) but to the porosity of BCPs at high relative humidity (94 %). This was the first study to show that BCPs of different types and sources had greatly varying hygroscopic properties.


2017 ◽  
Author(s):  
Xiaowei Wang ◽  
Bo Jing ◽  
Fang Tan ◽  
Jiabi Ma ◽  
Yunhong Zhang ◽  
...  

Abstract. Although water uptake of aerosols plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of aerosols are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form oxalic acid dihydrate at 77 % relative humidity (RH), and further lose crystalline water to convert into anhydrous oxalic acid around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA/AS droplets with OIRs of 1:3, 1:1 and 3:1 is 34.4 ± 2.0 % RH, 44.3 ± 2.5 % RH and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the partial deliquescence relative humidity (DRH) for mixed OA/AS particles with OIR of 1:3 and 1:1 is observed to occur at 81.1 ± 1.5 % RH and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA/AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols after slow dehydration process in the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA/AS particles with 3:1 ratio exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into nonhygroscopic NH4HC2O4. Although the hygroscopic growth of mixed OA/AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA/AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA/AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Marie Bermeo ◽  
Nabil El Hadri ◽  
Florent Ravaux ◽  
Abdelali Zaki ◽  
Linda Zou ◽  
...  

Hygroscopic materials which possess high moisture adsorption capacity were successfully upgraded by the functionalization of sodium chloride (NaCl) using two nuances of oxides. A procedure was developed to first prepare submicron-sized NaCl crystals; thereafter, these crystals were coated by choice of either titanium dioxide (TiO2) or silica (SiO2) to enhance the hygroscopic properties of NaCl and prevent its premature deliquescence. After coating, several analytical techniques were employed to evaluate the obtained composite materials. Our findings revealed that both composites NaCl-TiO2 and NaCl-SiO2 gave excellent performances by exhibiting interesting hydrophilic properties, compared to the sole NaCl. This was demonstrated by both environmental scanning electron microscope (ESEM) and water vapor adsorption experiments. In particular, NaCl-TiO2 composite showed the highest water adsorption capacity at low relative humidity and at a faster adsorption rate, induced by the high surface energy owing to the presence of TiO2. This result was also confirmed by the kinetics of adsorption, which revealed that not only does NaCl-TiO2 adsorb more water vapor than NaCl-SiO2 or sole NaCl but also the adsorption occurred at a much higher rate. While at room temperature and high relative humidity, the NaCl-SiO2 composite showed the best adsorption properties making it ideal to be used as a hygroscopic material, showing maximum adsorption performance compared to NaCl-TiO2 or sole NaCl. Therefore, NaCl-TiO2 and NaCl-SiO2 composites could be considered as promising hygroscopic materials and potential candidates to replace the existing salt seeding agents.


2015 ◽  
Vol 15 (15) ◽  
pp. 8847-8869 ◽  
Author(s):  
E. F. Mikhailov ◽  
G. N. Mironov ◽  
C. Pöhlker ◽  
X. Chi ◽  
M. L. Krüger ◽  
...  

Abstract. In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κv,ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv ≈ 0.15) and a Colorado mountain forest (κv ≈ 0.16 ). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv,p. The obtained κv,p values overestimate the experimental FDHA-KIM-derived κv,ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (> 300 nm) and supermicron aerosol particles possess core–shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall, the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second timescales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.


Cellulose ◽  
2021 ◽  
Author(s):  
Mohit Garg ◽  
Varvara Apostolopoulou-Kalkavoura ◽  
Mathieu Linares ◽  
Tahani Kaldéus ◽  
Eva Malmström ◽  
...  

AbstractFoams made from cellulose nanomaterials are highly porous and possess excellent mechanical and thermal insulation properties. However, the moisture uptake and hygroscopic properties of these materials need to be better understood for their use in biomedical and bioelectronics applications, in humidity sensing and thermal insulation. In this work, we present a combination of hybrid Grand Canonical Monte Carlo and Molecular Dynamics simulations and experimental measurements to investigate the moisture uptake within nanocellulose foams. To explore the effect of surface modification on moisture uptake we used two types of celluloses, namely TEMPO-oxidized cellulose nanofibrils and carboxymethylated cellulose nanofibrils. We find that the moisture uptake in both the cellulose nanomaterials increases with increasing relative humidity (RH) and decreases with increasing temperature, which is explained using the basic thermodynamic principles. The measured and calculated moisture uptake in amorphous cellulose (for a given RH or temperature) is higher as compared to crystalline cellulose with TEMPO- and CM-modified surfaces. The high water uptake of amorphous cellulose films is related to the formation of water-filled pores with increasing RH. The microscopic insight of water uptake in nanocellulose provided in this study can assist the design and fabrication of high-performance cellulose materials with improved properties for thermal insulation in humid climates or packaging of water sensitive goods. Graphic abstract


2011 ◽  
Vol 11 (11) ◽  
pp. 30877-30918
Author(s):  
E. Mikhailov ◽  
V. Merkulov ◽  
S. Vlasenko ◽  
D. Rose ◽  
U. Pöschl

Abstract. In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm, which can be deconvoluted into a dilute intrinsic hygroscopicity parameter (κm,∞) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For sodium chloride, the κm-interaction model (KIM) captures the observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1–99%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. By application of KIM to the measurement data we can distinguish three different regimes of hygroscopicity in the investigated aerosol samples: (I) A quasi-eutonic regime at low relative humidity (~60% RH) where the solutes co-exist in an aqueous and non-aqueous phase; (II) a gradually deliquescent regime at intermediate humidity (~60%–90% RH) where different solutes undergo gradual dissolution in the aqueous phase; and (III) a dilute regime at high humidity (≳90% RH) where the solutes are fully dissolved approaching their dilute intrinsic hygroscopicity. The characteristic features of the three hygroscopicity regimes are similar for both samples, while the RH threshold values vary as expected for samples of different chemical composition. In each regime, the concentration dependence of κm can be described by a simple KIM model equation based on observable mass growth factors and six fit parameters summarizing the combined effects of the dilute intrinsic hygroscopicity and interaction parameters of all involved chemical components. One of the fit parameters represents κm,∞ and can be used to predict CCN activation diameters as a function of water vapor supersaturation. For sodium chloride reference particles as well as for pristine rainforest aerosols consisting mostly of secondary organic matter, we obtained good agreement between the predicted and measured critical diameters of CCN activation. The application of KIM and mass-based measurement techniques shall help to bridge gaps in the current understanding of water uptake by atmospheric aerosols: (1) the gap between hygroscopicity parameters determined by HTDMA (hygroscopicity tandem differential mobility analyzer) or FDHA measurements under sub-saturated conditions and by CCN measurements at water vapor supersaturation, and (2) the gap between the results of simplified single parameter models widely used in atmospheric or climate science and the results of complex multi-parameter ion- and molecule-interaction models frequently used in physical chemistry and thermodynamics (AIM, E-AIM, UNIFAC, AIOMFAC etc.).


2019 ◽  
Vol 33 (5) ◽  
pp. 905-913 ◽  
Author(s):  
Linlin Liang ◽  
Guenter Engling ◽  
Yuan Cheng ◽  
Xiaoye Zhang ◽  
Junying Sun ◽  
...  

2011 ◽  
Vol 11 (1) ◽  
pp. 3117-3159 ◽  
Author(s):  
M. Irwin ◽  
N. Robinson ◽  
J. D. Allan ◽  
H. Coe ◽  
G. McFiggans

Abstract. The influence of the properties of fine particles on the formation of clouds and precipitation in the tropical atmosphere is of primary importance to their impacts on radiative forcing and the hydrological cycle. Measurements of aerosol number size distribution, hygroscopicity in both sub- and supersaturated regimes and composition were taken between March and July 2008 in the tropical rainforest in Borneo, Malaysia, marking the first study of this type in an Asian tropical rainforest. Hygroscopic growth factors (GF) at 90% relative humidity (RH) for the dry diameter range D0=32–258 nm, supersaturated water uptake behaviour for the dry diameter range D0=20–300 nm and aerosol chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA), a Droplet Measurement Technologies Cloud Condensation Nuclei counter (CCNc) and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. The derived hygroscopicty parameter κ ranged from between 0.05–0.37 for the supersaturation range 0.11–0.73% compared to those between 0.17–0.37 for measurements performed at a relative humidity of 90%. In contrast, results from a study with similar methodology performed in the Amazon basin report more similar values for κ, indicating that the aerosol as measured from both sites shows similar hygroscopic properties. However, the derived number of cloud condensation nuclei (NCCN) were much higher than those measured in the Amazon, due to the higher particle number concentrations in the rainforests of Borneo. This first contrast between the two environments may be of substantial importance in describing the impacts of particles in the tropical atmosphere.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Amira Touil ◽  
Roman Peczalski ◽  
Souad Timoumi ◽  
Fethi Zagrouba

The effect of hygrothermal conditions (air temperature and relative humidity) on the dehydration of theophylline monohydrate was investigated. Firstly, the equilibrium states of theophylline were investigated. The data from gravimetric analysis at constant temperature and humidity were reported as desorption isotherms. The PXRD analysis was used to identify the different polymorphic forms of theophylline: the monohydrate, the metastable anhydrate, and the stable anhydrate. Solid-solid phase diagrams for two processing times were proposed. Secondly, the dehydration kinetics were studied. The water content evolutions with time were recorded at several temperatures from 20°C to 80°C and several relative humidities from 4% to 50%. Different mathematical models were used to fit the experimental data. The spatially averaged solution of 2D Fickian transient diffusion equation best represented the water mass loss versus time experimental relationship. The dehydration rate constant was found to increase exponentially with air temperature and to decrease exponentially with air relative humidity.


Sign in / Sign up

Export Citation Format

Share Document