scholarly journals Coal-Fired Boiler Flue Gas Desulfurization System Based on Slurry Waste Heat Recovery in Severe Cold Areas

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Chenghu Zhang ◽  
Dezhi Zou ◽  
Xinpeng Huang ◽  
Weijun Lu

To reduce operating costs on the basis of ensuring the desulfurization efficiency in a wet flue gas desulfurization system, a theoretical model was put forward, and a calculation method was set up. Correlations between reaction zone height, flue gas inlet temperature, slurry inlet temperature, gas–liquid ratio and desulfurization efficiency were found. Based on the heat and mass transfer model of the spray tower, the integrated system of desulfurization tower and open slurry pool and the flue gas desulfurization-waste heat recovery system were established. Additionally, the effect of outdoor wind speed, heat dissipation area and ambient temperature on the slurry equilibrium temperature in the integrated system were analyzed. The results show the slurry equilibrium temperature of the desulfurization system is negatively correlated with outdoor wind speed and heat dissipation area, and positively related to ambient temperature. The slurry temperature is the main factor that affects the performance of the wet flue gas desulfurization system. Finally, based on the Harbin heating group Hua Hui hotspot energy-saving reconstruction project, a case analysis was conducted, which proves the flue gas desulfurization-waste heat recovery system is profitable, energy saving and a suitable investment project.

2019 ◽  
Vol 196 ◽  
pp. 649-663 ◽  
Author(s):  
Yiyu Men ◽  
Xiaohua Liu ◽  
Tao Zhang ◽  
Xi Xu ◽  
Yi Jiang

2014 ◽  
Vol 926-930 ◽  
pp. 829-832
Author(s):  
Yan Feng Liu ◽  
Peng Cheng Wang ◽  
Shao Shan Zhang

Flue gas recycling system is an effective way of saving energy and improving efficiency for coal-fired power plant. In this paper, the general low-temperature economizer, heat pipe type low temperature economizer, composite phase change heat recovery system are introduced. Combined with a 600MW unit parameters, the economies of various waste heat recovery system are compared.


2021 ◽  
Vol 39 (5) ◽  
pp. 1680-1688
Author(s):  
Xutong Wang ◽  
Meng Zhang

The waste heat recovered by traditional industrial waste heat recovery systems is mostly high-temperature flue gas and combustible gas, while the waste heat of medium and low temperature flue gas that accounts for more than 50% of the total waste heat resources has been ignored, which is not conducive to the effective energy saving of industrial production and manufacturing process. In the meantime, few studies have concerned about the changes in the economy of circulating industrial waste heat recovery system. Therefore, to fill in this research gap, this paper aimed at the economy problem of circulating medium and low temperature industrial waste heat recovery system and carried out a series of research. The paper completed the thermodynamic analysis of different medium and low temperature waste heat recovery modes of industrial flue gas, and gave the analysis steps of the economy of circulating medium and low temperature waste heat recovery system of industrial flue gas. The effectiveness and accuracy of the thermodynamic and thermo-economic models constructed in the paper were proved by experimental results.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 706 ◽  
Author(s):  
Jiayou Liu ◽  
Fengzhong Sun

Controlling the exhaust gas temperature (EGT) of coal–fired boilers at a reasonable value is beneficial to ensuring unit efficiency and preventing acid corrosion and fouling of tail heating surfaces in power plants. To obtain the operation regulation of coupled high–low energy flue gas waste heat recovery system (CWHRS) under a given EGT, experimental equipment was designed and built. Experiments were carried out to maintain the exhaust gas temperature under different flue gas flow, flue gas temperature and air temperature conditions. As the flue gas flows, the flue gas temperatures and air temperatures increased, and the bypass flue gas flow proportions or the water flows of the additional economizer were increased to maintain the EGT at about 85 °C. An improved low temperature economizer (LTE) and front located air heater (FAH) system were put forward. As the flow of the crossover pipe increased, the EGT and the inlet water temperature of the LTE increased. As the flow of the circulating loop increased, the EGT and the inlet water temperature of the LTE decreased. Operation regulations of LTE–FAH system under four cases were given. The operation regulations of CWHRS and LTE–FAH system can provide references for power plant operation.


Energy ◽  
2021 ◽  
pp. 120479
Author(s):  
Hongqiang Ma ◽  
Nuo Liang ◽  
Yemin Liu ◽  
Xinmei Luo ◽  
Caiqin Hou ◽  
...  

2021 ◽  
Vol 187 ◽  
pp. 116556
Author(s):  
Hongqiang Ma ◽  
Nuo Liang ◽  
Na Zhang ◽  
Xinmei Luo ◽  
Caiqin Hou ◽  
...  

2014 ◽  
Vol 67 (1-2) ◽  
pp. 240-249 ◽  
Author(s):  
Gang Xu ◽  
Cheng Xu ◽  
Yongping Yang ◽  
Yaxiong Fang ◽  
Yuanyuan Li ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 491-497 ◽  
Author(s):  
Jing Hui Song ◽  
Yan Lin ◽  
Yan Fen Liao ◽  
Xiao Qian Ma ◽  
Shu Mei Wu

The data of wet flue gas desulfurization (WFGD) power and water consumption, from two different coal-fired power plants (100 MW and 1000 MW) under full load operation, are studied for the WFGD economic analysis of waste-heat-recovery transformation with the installation of low pressure economizer (LPE). The results of 100MW unit show that, WFGD inlet flue gas temperature drops from 155°C to 110°C, the benefits generated include power consumption of fans declines by 23.85% and water consumption of the smoke desulfurization absorption tower declines by 34.88%. In another case, the temperature of inlet flue gas from WFGD of 1000 MW unit drops from 130°C to 84°C, power consumption of fans increases by 15.04% while water consumption of the smoke desulfurization absorption tower declines by 73.1%. Besides, the flow resistance is increased in LPE water side due to the installation of LPE. This makes power consumption of condensate pump enhanced, which slightly decreases the benefits from waste heat recovery.


Sign in / Sign up

Export Citation Format

Share Document