scholarly journals Technical Concepts for the Investigation of Spatial Effects in Spiral-Wound Microfiltration Membranes

Membranes ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 80 ◽  
Author(s):  
Martin Hartinger ◽  
Hans-Jürgen Heidebrecht ◽  
Simon Schiffer ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Existing works on the influence of spatial effects on flux and permeation of proteins in microfiltration (MF) have focused on ceramic membranes. There is little information on spiral-wound membranes (SWMs). Since the inner core of a SWM is practically inaccessible by non-destructive techniques, three different prototypes were constructed in this study to optimize suitability for the investigation of spatial effects on filtration performance. To measure the pressure drop, shortened SWMs 0.25, 0.50, and 0.75 times the length of a standard industrial SWM (0.96 m) were designed. Second, a sectioned membrane (0.96 m) with separated compartments on the permeate side was constructed to analyze spatial effects on flux and protein permeation along the flow path of a SWM. Three different features characterized this sectioned module: sectioned permeate pockets, a sectioned permeate collection tube, and sectioned permeate drain and measurement systems. Crossflow filtration experiments showed that these modifications did not alter the filtration performance compared to an unmodified control SWM. Thus, it can be applied to assess spatially-resolved filtration performance in SWMs. The third prototype designed was a test cell with accessible flat sheet membranes and spacer material, as in SWMs. The flow path in this test cell was designed to match the characteristics of the channels between the membrane sheets in a standard SWM as closely as possible. The flow path length and the combination of membrane material and spacer architecture were the same as in the control SWM. This test cell was designed to assess the effects of length and processing conditions on the formation of a deposit layer. The combined results of these test modules can yield new insights into the spatial distribution of flux, permeation of target components, and deposit formation.

Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 57
Author(s):  
Martin Hartinger ◽  
Jonas Napiwotzki ◽  
Eva-Maria Schmid ◽  
Dominik Hoffmann ◽  
Franziska Kurz ◽  
...  

Spacer design in spiral-wound membranes (SWMs) significantly affects the axial pressure drop in the flow channel but also the deposit layer removal. However, the effects of the spacer design and feed flow distribution in the module on the filtration performance have not yet been investigated during the highly fouling-susceptible fractionation of proteins from skim milk by SWMs. Therefore, a parallel spacer with no turbulence promotion and a less homogeneous feed flow distribution in the SWM was compared to a diamond spacer with regard to its impact on deposit formation and filtration performance. The experiments were conducted in a flat sheet test cell and in SWMs. The parallel spacer induced a more homogeneous deposit layer formation. However, no difference in filtration performance could be observed in the experiments with the test cell. Even though deposit layer formation dominates the microfiltration, its amount and spatial distribution could not be directly linked to the filtration performance. Furthermore, both spacers were assessed in SWM. Despite the higher crossflow velocity applicable in the more open channels of the parallel spacer, the performance of the parallel spacer was inferior to the diamond spacer. This was independent of the viscosity of the feed. Due to the high curvature of the membrane sheets close to the permeate collection tube, the cross-section of the flow channels in the SWM equipped with the parallel spacer was reduced. This resulted in a distinctly lower deposit layer control and performance, which could not be compensated by the resulting higher crossflow velocity far from the permeate collection tube.


2011 ◽  
Vol 76 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Zhaoxiang Zhong ◽  
Weixing Li ◽  
Weihong Xing ◽  
Nanping Xu

2019 ◽  
Vol 591 ◽  
pp. 117311 ◽  
Author(s):  
Martin Hartinger ◽  
Simon Schiffer ◽  
Hans-Jürgen Heidebrecht ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

2017 ◽  
Vol 18 (1) ◽  
Author(s):  
N. Bolong ◽  
I. Saad ◽  
S. E. Arshad

The preparation and testing of geopolymer ceramic membranes for water separation is presented. Geopolymers are typically used in refractories and as precursors to ceramic formation, allowing the production of ceramic-like materials with low temperature processes. A new geopolymer material was synthesized using local clay from Sabah, Malaysia and its filtration performance was compared to a commercial clay fabrication. The synthesized formulation of geopolymer ceramic paste was made by mixing local metakaolin clay as a source of aluminosilicate with alkaline solution, and then curing in a sealed environment. The amorphous paste was crushed and moulded prior to firing at an elevated temperature up to 700C. The feasibility of this laboratory-fabricated geopolymer for water filtration applications was studied by evaluating its performance at different thicknesses and mould shapes of fabricated membrane using 8 to 16 Molar natrium hydroxide (NaOH) as the alkali activator in the synthesis of the geopolymer. The result found that increased molarity of sodium hydroxide results higher compressive strength and affect filtration rate. Improved filtration performance (subject to the shape and width of the geopolymer membrane) was found by analysis and separation rates of 47% for blue dye colour and 88% for turbidity were achieved when operated without pressure or pump.


2021 ◽  
Vol 3 ◽  
Author(s):  
Oliver Birrenbach ◽  
Frederik Faust ◽  
Mehrdad Ebrahimi ◽  
Rong Fan ◽  
Peter Czermak

The characterization of membrane fouling provides valuable information about the performance and operational range of filtration processes. The range of operational parameters for the purification and concentration of protein aggregates from cell lysates by ultrafiltration is determined by evaluating the filtration resistances. We therefore investigated the cross-flow ultrafiltration of ovalbumin (OVA) aggregates with a mean size of 304 nm using a 50 nm cut-off ceramic membrane. We observed a 90% decline in flux within the first 10 min of filtration, demanding an in-depth analysis of membrane fouling. Resistance-in-series analysis revealed that the main filtration resistance originated from the cell lysate in the feed solution. Flux decline was monitored at different transmembrane pressures (TMPs) and concentrations for the most significant fouling phenomenon, indicating that the intermediate pore blocking model correlated best with the observed filtration data. The TMP for purification and concentration was set at 1.5 bar based on the prediction of a limited, mostly pressure-independent flux of 12 L·m−2·h−1 for solutions with an OVA aggregate concentration of 0.5 g·L−1. Higher pressure increased the filtration performance only slightly, but led to a linear increase in filtration resistance. A 10-fold variation in protein aggregate concentration strongly influenced filtration performance, with higher protein concentrations increasing the filtration resistance by 413% and causing an 85% decline in flux.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 180 ◽  
Author(s):  
Martin Hartinger ◽  
Hans-Jürgen Heidebrecht ◽  
Simon Schiffer ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Protein fractionation by means of microfiltration (MF) is significantly affected by fouling, especially when spiral-wound membranes (SWMs) are used. We investigated the influence of the mode of transmembrane pressure (ΔpTM) increase to target level and the deposit layer pressure history on the filtration performance during skim milk MF at temperatures of 10 °C and 50 °C. Two filtration protocols were established: No. 1: ΔpTM was set directly to various target values. No. 2: Starting from a low ΔpTM, we increased and subsequently decreased ΔpTM stepwise. The comparison of both protocols tested the effect of the mode of ΔpTM increase to target level. The latter protocol alone tested the effect of the deposit layer history with regard to the ΔpTM. As expected, flux and protein permeation were both found to be functions of the ΔpTM. Further, both measures were independent of the filtration protocol as long as ΔpTM was held at a constant level or, as part of protocol No. 2, ΔpTM was increased. Thus, we can state that the mode of ΔpTM increase to target level does not affect filtration performance in SWM. We found that after completion of a full cycle of stepping ΔpTM up from 0.5 bar to 3.0 bar and back down, flux and deposit layer resistance were not affected by the deposit layer history at 10 °C, but they were at 50 °C. Protein permeation, however, was lower for both 10 °C and 50 °C, when the ΔpTM cycle was completed. The processing history had a significant impact on filtration performance due to remaining structural compression effects in the deposited layer, which occur most notably at higher temperatures. Furthermore, temperatures of 50 °C lead to deposit layer aging, which is probably due to an enhanced crosslinking of particles in the deposit layer. Apart from that, we could show that fouling resistance does not directly correlate with protein permeation during skim milk MF using SWM.


2009 ◽  
Vol 333 (1-2) ◽  
pp. 94-99 ◽  
Author(s):  
Morten Lykkegaard Christensen ◽  
Troels Bach Nielsen ◽  
Morten Boel Overgaard Andersen ◽  
Kristian Keiding

Sign in / Sign up

Export Citation Format

Share Document