Milk protein fractionation by spiral-wound microfiltration membranes in diafiltration mode - Influence of feed protein concentration and composition on the filtration performance

2020 ◽  
Vol 102 ◽  
pp. 104606 ◽  
Author(s):  
Martin Hartinger ◽  
Ulrich Kulozik
2020 ◽  
Vol 605 ◽  
pp. 118110
Author(s):  
Martin Hartinger ◽  
Simon Schiffer ◽  
Hans-Jürgen Heidebrecht ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 180 ◽  
Author(s):  
Martin Hartinger ◽  
Hans-Jürgen Heidebrecht ◽  
Simon Schiffer ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Protein fractionation by means of microfiltration (MF) is significantly affected by fouling, especially when spiral-wound membranes (SWMs) are used. We investigated the influence of the mode of transmembrane pressure (ΔpTM) increase to target level and the deposit layer pressure history on the filtration performance during skim milk MF at temperatures of 10 °C and 50 °C. Two filtration protocols were established: No. 1: ΔpTM was set directly to various target values. No. 2: Starting from a low ΔpTM, we increased and subsequently decreased ΔpTM stepwise. The comparison of both protocols tested the effect of the mode of ΔpTM increase to target level. The latter protocol alone tested the effect of the deposit layer history with regard to the ΔpTM. As expected, flux and protein permeation were both found to be functions of the ΔpTM. Further, both measures were independent of the filtration protocol as long as ΔpTM was held at a constant level or, as part of protocol No. 2, ΔpTM was increased. Thus, we can state that the mode of ΔpTM increase to target level does not affect filtration performance in SWM. We found that after completion of a full cycle of stepping ΔpTM up from 0.5 bar to 3.0 bar and back down, flux and deposit layer resistance were not affected by the deposit layer history at 10 °C, but they were at 50 °C. Protein permeation, however, was lower for both 10 °C and 50 °C, when the ΔpTM cycle was completed. The processing history had a significant impact on filtration performance due to remaining structural compression effects in the deposited layer, which occur most notably at higher temperatures. Furthermore, temperatures of 50 °C lead to deposit layer aging, which is probably due to an enhanced crosslinking of particles in the deposit layer. Apart from that, we could show that fouling resistance does not directly correlate with protein permeation during skim milk MF using SWM.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 692
Author(s):  
Roland Schopf ◽  
Florian Schmidt ◽  
Johanna Linner ◽  
Ulrich Kulozik

The fractionation efficiency of hollow fiber membranes (HFM) for milk protein fractionation was compared to ceramic tubular membranes (CTM) and spiral wound membranes (SWM). HFM combine the features of high membrane packing density of SWM and the more defined flow conditions and better control of membrane fouling in the open flow channel cross-sections of CTM. The aim was to comparatively analyze the effect of variations in local pressure and flow conditions while using single industrially sized standard modules with similar dimensions and module footprints (module diameter and length). The comparative assessment with varied transmembrane pressure was first applied for a constant feed volume flow rate of 20 m3 h−1 and, secondly, with the same axial pressure drop along the modules of 1.3 bar m−1, similar to commonly applied crossflow velocity and wall shear stress conditions at the industrial level. Flux, transmission factor of proteins (whey proteins and serum caseins), and specific protein mass flow per area membrane and per volume of module installed were determined as the evaluation criteria. The casein-to-whey protein ratios were calculated as a measure for protein fractionation effect. Results obtained show that HFM, which so far are under-represented as standard module types in industrial dairy applications, appear to be a competitive alternative to SWM and CTM for milk protein fractionation.


2021 ◽  
Vol 259 ◽  
pp. 118050
Author(s):  
Simon Schiffer ◽  
Andreas Matyssek ◽  
Martin Hartinger ◽  
Peter Bolduan ◽  
Peter Mund ◽  
...  

2014 ◽  
Vol 10 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Thilo H. A. Berg ◽  
Jes C. Knudsen ◽  
Richard Ipsen ◽  
Frans van den Berg ◽  
Hans H. Holst ◽  
...  

Abstract Development of resistance during multiple foulings and three-step Cleaning-In-Place (CIP) operations, simulating an industrial cleaning regime of polysulfone ultrafiltration membranes, was investigated. The study explored how trans-membrane pressure (150 and 300 kPa) and feed protein concentration (0.9 and 10%) influenced resistance reduction during filtration and flux recovery by the cleaning procedures. New membranes, pre-cleaned with a full CIP cycle, were used for each experiment. Subsequent fouling (simulating production) and CIP were done three times in a row and the development of fouling layer resistance was monitored and evaluated. Results show that filtration performance decreased during the first days of usage, possibly related to build-up of internal fouling. Cleaning success based on flux recovery was negatively influenced by a high protein concentration in the feed, but independent of the trans-membrane pressure during filtration.


1988 ◽  
Vol 46 (3) ◽  
pp. 403-415 ◽  
Author(s):  
P. D. Penning ◽  
R. J. Orr ◽  
T. T. Treacher

ABSTRACTThe responses to supplements differing in protein concentration and degradability were measured in lactating ewes and their twin lambs when offered fresh ryegrass either cut or grazed. Housed Scottish Halfbred ewes, offered fresh-cut grass ad libitum received no supplement (N) or supplements with barley and maize starch (B); barley and soya-bean meal (S); barley, soya-bean meal and fish meal (SF) or barley and fish meal (F) in weeks 2 to 7 of lactation. By feeding supplements, herbage organic-matter (OM) intake was depressed (2·00 v. 1·74 kg/day). Mean daily milk yield was increased when protein supplements were given and, because milk protein concentration was higher for supplement F and similar for all other diets, mean daily milk protein output increased with increasing fish meal in the diet. Milk yields were N 2·55, B 2·59, S 3·17, SF 3·15 and F 3·17 kg/day. Total milk solids and fat concentrations were also higher for S, SF and F than N or B. Lambs from ewes supplemented with protein grew faster and the ewes generally lost less weight and body condition compared with unsupplemented ewes.At pasture, Masham ewes grazed at herbage allowances of either 4 (L) or 10 (H) kg OM per day and received no supplement (N) or supplements B or F, for the first 6 weeks of lactation and then, in weeks 7 to 12, grazed without supplements. For NL, BL, FL, NH, BH and FH respectively lamb growth rates from birth to 6 weeks were 235, 242, 274, 267, 286 and 302 g/day; from birth to 12 weeks were 210, 209, 249, 255, 275 and 287 g/day and losses in ewe body-condition score from birth to 12 weeks were 1·28, 1·22, 1·06, 0·97, 0·62 and 0·76.It is concluded that protein supplements increased milk yield and lamb growth rates and that the response tended to be greater with fish meal.


1996 ◽  
Vol 62 (1) ◽  
pp. 1-3 ◽  
Author(s):  
P. C. Garnsworthy

AbstractTwenty-eight Holstein/Friesian dairy cows were divided into four groups of seven. From weeks 4 to 15 of lactation they were given a basal diet consisting of 8 kg hay, 2 kg sugar-beet feed and 2 kg grass nuts, together with a concentrate allowance of 8 kg/day. Concentrates for group A were based on cereals and soya (control). Concentrate B contained 60 g protected fat supplement per kg; concentrate C contained 100 g lactose per kg; concentrate D contained 60 g fat supplement and 100 g lactose per kg. Milk yields were 24·6, 27·7, 25·6 and 26·5 kg/day and milk protein concentrations were 32·3, 30·7, 32·7 and 31·9 g/kg for groups A, B, C and D respectively. The effect of fat supplementation on milk yield and protein concentration was significant (P < 0·05) but the effect of lactose was not significant. Milk fat concentration was not significantly affected by treatment. It is concluded that lactose can partially alleviate the depression in milk protein concentration often observed when cows are given protected fat.


Sign in / Sign up

Export Citation Format

Share Document