scholarly journals Milk Protein Fractionation by Means of Spiral-Wound Microfiltration Membranes: Effect of the Pressure Adjustment Mode and Temperature on Flux and Protein Permeation

Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 180 ◽  
Author(s):  
Martin Hartinger ◽  
Hans-Jürgen Heidebrecht ◽  
Simon Schiffer ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Protein fractionation by means of microfiltration (MF) is significantly affected by fouling, especially when spiral-wound membranes (SWMs) are used. We investigated the influence of the mode of transmembrane pressure (ΔpTM) increase to target level and the deposit layer pressure history on the filtration performance during skim milk MF at temperatures of 10 °C and 50 °C. Two filtration protocols were established: No. 1: ΔpTM was set directly to various target values. No. 2: Starting from a low ΔpTM, we increased and subsequently decreased ΔpTM stepwise. The comparison of both protocols tested the effect of the mode of ΔpTM increase to target level. The latter protocol alone tested the effect of the deposit layer history with regard to the ΔpTM. As expected, flux and protein permeation were both found to be functions of the ΔpTM. Further, both measures were independent of the filtration protocol as long as ΔpTM was held at a constant level or, as part of protocol No. 2, ΔpTM was increased. Thus, we can state that the mode of ΔpTM increase to target level does not affect filtration performance in SWM. We found that after completion of a full cycle of stepping ΔpTM up from 0.5 bar to 3.0 bar and back down, flux and deposit layer resistance were not affected by the deposit layer history at 10 °C, but they were at 50 °C. Protein permeation, however, was lower for both 10 °C and 50 °C, when the ΔpTM cycle was completed. The processing history had a significant impact on filtration performance due to remaining structural compression effects in the deposited layer, which occur most notably at higher temperatures. Furthermore, temperatures of 50 °C lead to deposit layer aging, which is probably due to an enhanced crosslinking of particles in the deposit layer. Apart from that, we could show that fouling resistance does not directly correlate with protein permeation during skim milk MF using SWM.

Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 57
Author(s):  
Martin Hartinger ◽  
Jonas Napiwotzki ◽  
Eva-Maria Schmid ◽  
Dominik Hoffmann ◽  
Franziska Kurz ◽  
...  

Spacer design in spiral-wound membranes (SWMs) significantly affects the axial pressure drop in the flow channel but also the deposit layer removal. However, the effects of the spacer design and feed flow distribution in the module on the filtration performance have not yet been investigated during the highly fouling-susceptible fractionation of proteins from skim milk by SWMs. Therefore, a parallel spacer with no turbulence promotion and a less homogeneous feed flow distribution in the SWM was compared to a diamond spacer with regard to its impact on deposit formation and filtration performance. The experiments were conducted in a flat sheet test cell and in SWMs. The parallel spacer induced a more homogeneous deposit layer formation. However, no difference in filtration performance could be observed in the experiments with the test cell. Even though deposit layer formation dominates the microfiltration, its amount and spatial distribution could not be directly linked to the filtration performance. Furthermore, both spacers were assessed in SWM. Despite the higher crossflow velocity applicable in the more open channels of the parallel spacer, the performance of the parallel spacer was inferior to the diamond spacer. This was independent of the viscosity of the feed. Due to the high curvature of the membrane sheets close to the permeate collection tube, the cross-section of the flow channels in the SWM equipped with the parallel spacer was reduced. This resulted in a distinctly lower deposit layer control and performance, which could not be compensated by the resulting higher crossflow velocity far from the permeate collection tube.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 692
Author(s):  
Roland Schopf ◽  
Florian Schmidt ◽  
Johanna Linner ◽  
Ulrich Kulozik

The fractionation efficiency of hollow fiber membranes (HFM) for milk protein fractionation was compared to ceramic tubular membranes (CTM) and spiral wound membranes (SWM). HFM combine the features of high membrane packing density of SWM and the more defined flow conditions and better control of membrane fouling in the open flow channel cross-sections of CTM. The aim was to comparatively analyze the effect of variations in local pressure and flow conditions while using single industrially sized standard modules with similar dimensions and module footprints (module diameter and length). The comparative assessment with varied transmembrane pressure was first applied for a constant feed volume flow rate of 20 m3 h−1 and, secondly, with the same axial pressure drop along the modules of 1.3 bar m−1, similar to commonly applied crossflow velocity and wall shear stress conditions at the industrial level. Flux, transmission factor of proteins (whey proteins and serum caseins), and specific protein mass flow per area membrane and per volume of module installed were determined as the evaluation criteria. The casein-to-whey protein ratios were calculated as a measure for protein fractionation effect. Results obtained show that HFM, which so far are under-represented as standard module types in industrial dairy applications, appear to be a competitive alternative to SWM and CTM for milk protein fractionation.


2019 ◽  
Vol 591 ◽  
pp. 117311 ◽  
Author(s):  
Martin Hartinger ◽  
Simon Schiffer ◽  
Hans-Jürgen Heidebrecht ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1090
Author(s):  
Simon Schiffer ◽  
Bello Teslim Adekunle ◽  
Andreas Matyssek ◽  
Martin Hartinger ◽  
Ulrich Kulozik

During skim milk microfiltration (nominal pore size of 0.1 µm) at 10 °C, the whey protein purity in the permeate is reduced by an enhanced serum casein permeation, primarily of β-casein. To decrease casein permeation, the possibility of a pre-heating step under pasteurization conditions before the filtration step was investigated, so as to shift the equilibrium from soluble serum casein monomers to impermeable micellar casein. Immediately after the pre-heating step, low temperature microfiltration at 10 °C was conducted before the casein monomers could diffuse into the serum. The hypothesis was that the dissociation of β-casein into the serum as a result of a decreasing temperature takes more time than the duration of the microfiltration process. It was found that pre-heating reduced the β-casein permeation during microfiltration without significantly affecting the flux and whey protein permeation, compared with a microfiltration at 10 °C without the pre-heating step. Furthermore, the addition of calcium (5 and 10 mM) not only reduced the casein permeation and thus increased the permeate purity, defined as a high whey protein-to-casein (g L−1/g L−1) ratio, but also decreased the filtration performance, possibly due to the structural alteration of the deposited casein micelle layer, rendering the deposit more compact and more retentive. Therefore, the possible combination of the addition of calcium and pre-heating prior to microfiltration was also investigated in order to evidence the potential increase of whey protein (WP) purity in the permeate in the case of Ca2+ addition prior to microfiltration. This study shows that pre-heating very close to low temperature microfiltration results in an increased purity of the whey protein fraction obtained in the permeate.


2020 ◽  
Vol 605 ◽  
pp. 118110
Author(s):  
Martin Hartinger ◽  
Simon Schiffer ◽  
Hans-Jürgen Heidebrecht ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Author(s):  
Chenchaiah Marella ◽  
Venkateswarlu Sunkesula ◽  
Ahmed R. A. Hammam ◽  
Anil Kommineni ◽  
and Lloyd E. Metzger

Micellar Casein Concentrate (MCC) is manufactured from microfiltration (MF) of skim milk utilizing ceramic or polymeric membrane filtration. While ceramic filtration has higher efficiency, use of polymeric is cost effective and the process is familiar to several US dairy processors. The aim of the present study was to develop an optimized membrane filtration process to produce MCC using spiral wound polymeric membrane filtration (SW MF) system by systematic selection of transmembrane pressure (TMP) and level of diafiltration (DF). Using skim milk as feed material, preliminary lab-scale MF experiments were conducted using 0.5 µm polyvinylidene fluoride (PVDF) membrane. Three TMP (34.5, 62.1, and 103.4 kPa) and three levels of DF (70, 100, and 150%) along with a process without DF as control were used in the study. Effect of TMP and effectiveness of DF on flux rates, SP removal, casein to total protein (CN/TKN) ratio, casein to true protein (CN/TP) ratio, rejection of casein (rej CN) and SP (rej SP) were evaluated. At all TMP values used in the study, the overall flux (O Flux) increased with the level of DF. Highest O Flux of 30.77 liter per meter square per hour (LMH) was obtained with 34.5 kPa pressure and 150% DF. The impact of DF was more pronounced at lower pressures than at the higher pressures used in the study. With controlled DF, instantaneous flux was maintained within 80% of initial flux for the entire process run. For all the experiments, casein has a rejection of 0.97 to 1.0, while serum protein has the lowest rejection of 0.10 at 34.5 kPa pressure and 150% DF level. Use of 34.5 kPa and DF level of 150 % contributed to 81.45% SP removal, and casein to true protein ratio of 0.96. SP removal data from the lab-scale experiments were fitted into a mathematical model using DF and square of TMP as factors. The model predicts SP removal within 90-95% of actual SP removal got from the pilot plant experiments.


2016 ◽  
Vol 99 (8) ◽  
pp. 6164-6179 ◽  
Author(s):  
Camilla Elise Jørgensen ◽  
Roger K. Abrahamsen ◽  
Elling-Olav Rukke ◽  
Anne-Grethe Johansen ◽  
Reidar B. Schüller ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Zhibin Li ◽  
Dasong Liu ◽  
Shu Xu ◽  
Wenjin Zhang ◽  
Peng Zhou

Effects of pore diameters (100, 50, and 20 nm), concentration factors (1–8) and processing stages (1–5) on the transmission of major serum proteins (β-lactoglobulin and α-lactalbumin) and minor serum proteins (immunoglobulin (Ig) G, IgA, IgM, lactoferrin (LF), lactoperoxidase (LPO), xanthine oxidase (XO)) during ceramic microfiltration (MF) of skim milk were studied. Holstein skim milk was microfiltered at a temperature of 50 °C, a transmembrane pressure of 110 kPa and a crossflow velocity of 6.7 m/s, using a tubular single stainless steel module that consisted of three ceramic tubes, each with 19 channels (3.5 mm inner diameter) and a length of 0.5 m. For MF with 100 nm and 50 nm pore diameters, the recovery yield of major serum proteins in permeate was 44.3% and 44.1%, while the recovery yield of minor serum proteins was slightly less by 0%–8% than 50 nm MF. MF with 20 nm pore diameters showed a markedly lower (by 12%–45%) recovery yield for both major and minor serum proteins, corresponding with its lower membrane flux. Flux sharply decreased with an increasing concentration factor (CF) up to four, and thereafter remained almost unchanged. Compared to the decrease (88%) of flux, the transmission of major and minor serum proteins was decreased by 4%–15% from CF = one to CF = eight. With increasing processing stages, the flux gradually increased, and the recovery yield of both major and minor proteins in the permeate gradually decreased and reached a considerably low value at stage five. After four stages of MF with 100 nm pore diameter and a CF of four for each stage, the cumulative recovery yield of major serum proteins, IgG, IgA, IgM, LF, LPO, and XO reached 95.7%, 90.8%, 68.5%, 34.1%, 15.3%, 39.1% and 81.2% respectively.


Sign in / Sign up

Export Citation Format

Share Document