scholarly journals Microstructure Refinement by Low-Temperature Ausforming in an Fe-Based Metastable High-Entropy Alloy

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Motomichi Koyama ◽  
Takeaki Gondo ◽  
Kaneaki Tsuzaki

The effects of ausforming in an Fe30Mn10Cr10Co high-entropy alloy on the microstructure, hardness, and plastic anisotropy were investigated. The alloy showed a dual-phase microstructure consisting of face-centered cubic (FCC) austenite and hexagonal close-packed (HCP) martensite in the as-solution-treated condition, and the finish temperature for the reverse transformation was below 200 °C. Therefore, low-temperature ausforming at 200 °C was achieved, which resulted in microstructure refinement and significantly increased the hardness. Furthermore, plasticity anisotropy, a common problem in HCP structures, was suppressed by the ausforming treatment. This, in turn, reduced the scatter of the hardness.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

AbstractIn this work, we studied the brazing characteristics of Al2O3 and 3D printed Ti–6Al–4V alloys using a novel equiatomic AlZnCuFeSi high entropy alloy filler (HEAF). The HEAF was prepared by mechanical alloying of the constituent powder and spark plasma sintering (SPS) approach. The filler microstructure, wettability and melting point were investigated. The mechanical and joint strength properties were also evaluated. The results showed that the developed AlZnCuFeSi HEAF consists of a dual phase (Cu–Zn, face-centered cubic (FCC)) and Al–Fe–Si rich (base centered cubic, BCC) phases. The phase structure of the (Cu–Al + Ti–Fe–Si)/solid solution promises a robust joint between Al2O3 and Ti–6Al–4V. In addition, the joint interfacial reaction was found to be modulated by the brazing temperature and time because of the altered activity of Ti and Zn. The optimum shear strength reached 84 MPa when the joint was brazed at 1050 °C for 60 s. The results can be promising for the integration of completely different materials using the entropy driven fillers developed in this study.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1078
Author(s):  
Jiro Kitagawa ◽  
Shusuke Hamamoto ◽  
Naoki Ishizu

High-entropy alloys (HEAs) are a new class of materials which are being energetically studied around the world. HEAs are characterized by a multicomponent alloy in which five or more elements randomly occupy a crystallographic site. The conventional HEA concept has developed into simple crystal structures such as face-centered-cubic (fcc), body-centered-cubic (bcc) and hexagonal-closed packing (hcp) structures. The highly atomic-disordered state produces many superior mechanical or thermal properties. Superconductivity has been one of the topics of focus in the field of HEAs since the discovery of the bcc HEA superconductor in 2014. A characteristic of superconductivity is robustness against atomic disorder or extremely high pressure. The materials research on HEA superconductors has just begun, and there are open possibilities for unexpectedly finding new phenomena. The present review updates the research status of HEA superconductors. We survey bcc and hcp HEA superconductors and discuss the simple material design. The concept of HEA is extended to materials possessing multiple crystallographic sites; thus, we also introduce multisite HEA superconductors with the CsCl-type, α-Mn-type, A15, NaCl-type, σ-phase and layered structures and discuss the materials research on multisite HEA superconductors. Finally, we present the new perspectives of eutectic HEA superconductors and gum metal HEA superconductors.


2018 ◽  
Vol 63 (6) ◽  
pp. 362-368 ◽  
Author(s):  
Junyang He ◽  
Qi Wang ◽  
Husheng Zhang ◽  
Lanhong Dai ◽  
Toshiji Mukai ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 288
Author(s):  
Yiming Tan ◽  
Jinshan Li ◽  
Jun Wang ◽  
Hongchao Kou

CoCrFeNiPdMnx (x = 0, 0.2, 0.4, 0.6, 0.8) high entropy alloys (HEAs) were prepared and characterized. With an increase in Mn addition, the microstructures changed from dendrites (CoCrFeNiPd with a single face-centered-cubic (FCC) phase) to divorced eutectics (CoCrFeNiPdMn0.2 and CoCrFeNiPdMn0.4), to hypoeutectic microstructures (CoCrFeNiPdMn0.6), and finally to seaweed eutectic dendrites (CoCrFeNiPdMn0.8). The addition of Mn might change the interface energy anisotropy of both the FCC/liquid and MnPd-rich intermetallic compound/liquid interfaces, thus forming the seaweed eutectic dendrites. The hardness of the FCC phase was found to be highly related to the solute strengthening effect, the formation of nanotwins and the transition from CoCrFeNiPd-rich to CoCrFeNi-rich FCC phase. Hierarchical nanotwins were found in the MnPd-rich intermetallic compound and a decrease in either the spacing of primary twins or secondary twins led to an increase in hardness. The designing rules of EHEAs were discussed and the pseudo binary method was revised accordingly.


2017 ◽  
Vol 129 ◽  
pp. 30-34 ◽  
Author(s):  
Jithin Joseph ◽  
Nicole Stanford ◽  
Peter Hodgson ◽  
Daniel Mark Fabijanic

2021 ◽  
Author(s):  
Jiro Kitagawa ◽  
Naoki Ishizu ◽  
Shusuke Hamamoto

The first purpose of this chapter is materials research on face-centered-cubic (fcc) high-entropy alloy (HEA) superconductors, which have not yet been reported. We have investigated several Nb-containing multicomponent alloys. Although we succeeded in obtaining Nb-containing samples with the dominant fcc phases, no superconducting signals appeared in these samples down to 3 K. The microstructure analyses revealed that all samples were multi-phase, but the existence of several new Nb-containing HEA phases was confirmed in them. The second purpose is the report of materials research on the Mn5Si3-type HEA superconductors. This hexagonal structure offers various intermetallic compounds, which often undergo a superconducting state. The Mn5Si3-type HEA is classified into the multisite HEA, which possesses the high degree of freedom in the materials design and is good platform for studying exotic HEA superconductors. We have successfully found a single-phase Mn5Si3-type HEA, which, however, does not show a superconducting property down to 3 K. The attempt of controlling the valence electron count was not successful.


2019 ◽  
Vol 172 ◽  
pp. 51-55 ◽  
Author(s):  
Gang Qin ◽  
Ruirun Chen ◽  
Peter K. Liaw ◽  
Yanfei Gao ◽  
Xiaoqing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document