scholarly journals Deformation Behavior and Microstructural Evolution of Inconel 625 Superalloy during the Hot Compression Process

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 824
Author(s):  
Fulong Chen ◽  
Kaidi Li ◽  
Bin Tang ◽  
Degui Liu ◽  
Hong Zhong ◽  
...  

Hot deformation behavior and the microstructural evolution of Inconel 625 superalloy plates are investigated by hot compression tests in a range of working temperatures (800–1050 °C) and strain rates (0.001–1 s−1). The microstructural observation shows that a strong <110> texture forms when the processing temperature is below 950 °C, whose intensity decreases with the increases of the temperature, and it disappears when compressing above 950 °C. During the compression test, twin-related dynamic recrystallization (DRX) occurs in the investigated temperature range, and the intensity of twin-related DRX increases with the increases of the temperature. In addition, as the temperature increases, the intensity of continuum DRX decreases.

2014 ◽  
Vol 511-512 ◽  
pp. 63-69
Author(s):  
Rui Jia ◽  
Fu Zhong Wang

Deformation behavior of steel 33Μn2v for oil well tube was studied by hot compression tests conducted at various temperatures and strain rates.The Kumar model was developed to predict the hot deformation behavior of steel 33Mn2V for oil well tube.In this regard,the hot compression tests were carried out at the temperatures from 750°C to 1200°C and at the strain rates of 0.02s1 to 0.16 s1.The experimental data were then used to determine the constants of developed constitutive equations. The Kumar model can be represented by ZenerHollomon parameter in a hyperbolic sinusoidal equation form.The apparent activation energy of deformation is calculated to be 342.1481kJ/Mol.Dynamic recrystallization of steel 33Mn2V occur and the completion of the critical deformation is small,termination error and the initial deformation is smaller.Therefore,its easy for the steel 33Mn2V to the occurrence and completion of dynamic recrystallization.


2018 ◽  
Vol 941 ◽  
pp. 458-467
Author(s):  
Nima Safara Nosar ◽  
Fredrik Sandberg ◽  
Göran Engberg

The behavior of a 13% chromium steel subjected to hot deformation has been studied by performing hot compression tests in the temperature range of 850 to 12000C and at strain rates from 0.01 to 10 s-1. The uniaxial hot compression tests were performed on a Gleeble thermo-mechanical simulator. The best function that fits the peak stress for the material and its relation to the Zener-Hollomon parameter (Z) is derived. The average activation energy of this alloy in the entire test domain was found to be about 557 [kJmol-1] and the dynamic recrystallization (DRX) kinetics was studied to find the fraction DRX during deformation.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Y. Cao ◽  
H.S. Di ◽  
R.D.K. Misra

AbstractHot deformation behavior of AISI 420 stainless steel was studied under hot compression tests in the temperature range of 950 to 1150 °C and strain rates of 0.01 s


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1020 ◽  
Author(s):  
Kristina Kittner ◽  
Madlen Ullmann ◽  
Thorsten Henseler ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

In the present work, the microstructure, texture, mechanical properties as well as hot deformation behavior of a Mg-2Zn-1Al-0.3Ca sheet manufactured by twin roll casting were investigated. The twin roll cast state reveals a dendritic microstructure with intermetallic compounds predominantly located in the interdendritic areas. The twin roll cast samples were annealed at 420 °C for 2 h followed by plane strain compression tests in order to study the hardening and softening behavior. Annealing treatment leads to the formation of a grain structure, consisting of equiaxed grains with an average diameter of approximately 19 µm. The twin roll cast state reveals a typical basal texture and the annealed state shows a weakened texture, by spreading basal poles along the transverse direction. The twin roll cast Mg-2Zn-1Al-0.3Ca alloy offers a good ultimate tensile strength of 240 MPa. The course of the flow curves indicate that dynamic recrystallization occurs during hot deformation. For the validity range from 250 °C to 450 °C as well as equivalent logarithmic strain rates from 0.01 s−1 to 10 s−1 calculated model coefficients are shown. The average activation energy for plastic flow of the twin roll cast and annealed Mg-2Zn-1Al-0.3Ca alloy amounts to 180.5 kJ/mol. The processing map reveals one domain with flow instability at temperatures above 370 °C and strain rates ranging from 3 s−1 to 10 s−1. Under these forming conditions, intergranular cracks arose and grew along the grain boundaries.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


2015 ◽  
Vol 34 (6) ◽  
Author(s):  
Xiaolan Han ◽  
Shengdun Zhao ◽  
Chenyang Zhang ◽  
Shuqin Fan ◽  
Fan Xu

AbstractIn order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s


2010 ◽  
Vol 139-141 ◽  
pp. 545-548 ◽  
Author(s):  
Shu Li Sun ◽  
Min Gang Zhang ◽  
Wen Wu He ◽  
Jun Qi Zhou ◽  
Gang Sun

The hot deformation behavior of as-cast AZ31 magnesium alloys have been investigated at 200~400°C and strain rates 0.001~1s-1 by means of hot compression tests on a Gleeble-1500D thermal-mechanical simulator. We have analyzed the flow stress-strain curve and presented the constitutive equation by calculating stress exponent, activation energy and Zemer-Hollomon parameter. Then, the processing map of AZ31 alloys has been developed based on the dynamic material model theories and Prasad instability criterion. The flow instability domain is observed at lower temperature and the larger power dissipation rate is emerging at 300~400°C. We have analyzed the corresponding deformation microstructures and it is characteristic of dynamic recrystallization. These results have shown that AZ31 alloy has good workability at 300~400°C and lower strain rate.


Sign in / Sign up

Export Citation Format

Share Document