scholarly journals Modeling of Isothermal Dissolution of Precipitates in a 6061 Aluminum Alloy Sheet during Solution Heat Treatment

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1234
Author(s):  
Yong Liu ◽  
Dongyu Fang ◽  
Bin Zhu ◽  
Yilin Wang ◽  
Shiqi Li ◽  
...  

During the solution heat treatment (SHT) process of aluminum alloys, precipitates dissolve into the matrix. To predict the dissolution time, modeling of isothermal dissolution of precipitates in 6061 aluminum alloy during SHT was conducted. A precipitate dissolution model was established, and the flowchart of the modeling was designed as well. Then the explicit finite-difference method was employed to solve the dissolution model, and the mobile nodes method was used to deal with the moving interface. The simulation was based on real precipitates in 6061, and SHT experiments were conducted to validate the numerical model. The simulation results showed that the isothermal dissolution time of precipitates in 6061-T6 aluminum alloy at 560 °C is 11.6856 s. The dissolution time in the simulation was close to the experimental results, with an error of 16.7%, indicating that the modeling in this study was fairly reasonable and accurate. The error was caused by many factors, and the model should be improved.

2013 ◽  
Vol 313-314 ◽  
pp. 67-71 ◽  
Author(s):  
Nitikarn Pajaroen ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin ◽  
Sirikul Wisutmethangoon

The influence of solution heat treatment (SHT) temperature and time on the microstructure and mechanical properties of semi-solid 6061 aluminum alloy has been investigated in this study. Microstructure of the as-cast 6061 aluminum alloy mainly consisted of globular α-Al matrix and eutectic phase (α-Al + Mg2Si) at the grain boundary (GB). Iron rich intermetallic phase was also observed at the grain boundary. Eutectic phase started to dissolve after solution heat treatment. The dissolution of eutectic phase increased with increasing solution treatment time, however, the amount of remaining eutectic phase was found to be slightly changed after solution treating longer than 1 h at 550 °C and 2 h at 530 °C. Hardness and tensile results of specimens after artificial aging were utilized to compare and select the optimum solution heat treatment condition cooperating with the microstructural observation. The optimum solution heat treatment condition of the alloy in this study was at 530 °C for 2 h.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4157 ◽  
Author(s):  
Isidro Guzmán ◽  
Everardo Granda ◽  
Jorge Acevedo ◽  
Antonia Martínez ◽  
Yuliana Dávila ◽  
...  

Precipitation hardening aluminum alloys are used in many industries due to their excellent mechanical properties, including good weldability. During a welding process, the tensile strength of the joint is critical to appropriately exploit the original properties of the material. The welding processes are still under study, and gas metal arc welding (GMAW) in pulsed metal-transfer configuration is one of the best choices to join these alloys. In this study, the welding of 6061 aluminum alloy by pulsed GMAW was performed under two heat treatment conditions and by using two filler metals, namely: ER 4043 (AlSi5) and ER 4553 (AlMg5Cr). A solubilization heat treatment T4 was used to dissolve the precipitates of β”- phase into the aluminum matrix from the original T6 heat treatment, leading in the formation of β-phase precipitates instead, which contributes to higher mechanical resistance. As a result, the T4 heat treatment improves the quality of the weld joint and increases the tensile strength in comparison to the T6 condition. The filler metal also plays an important role, and our results indicate that the use of ER 4043 produces stronger joints than ER 4553, but only under specific processing conditions, which include a moderate heat net flux. The latter is explained because Mg, Si and Cu are reported as precursors of the production of β”- phase due to heat input from the welding process and the redistribution of both: β” and β precipitates, causes a ductile intergranular fracture near the heat affected zone of the weld joint.


Sign in / Sign up

Export Citation Format

Share Document