scholarly journals Effect of Solidification Rates at Sand Casting on the Mechanical Joinability of a Cast Aluminium Alloy

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1304
Author(s):  
Moritz Neuser ◽  
Olexandr Grydin ◽  
Anatolii Andreiev ◽  
Mirko Schaper

Implementing the concept of mixed construction in modern automotive engineering requires the joining of sheet metal or extruded profiles with cast components made from different materials. As weight reduction is desired, these cast components are usually made from high-strength aluminium alloys of the Al-Si (Mn, Mg) system, which have limited weldability. The mechanical joinability of the cast components depends on their ductility, which is influenced by the microstructure. High-strength cast aluminium alloys have relatively low ductility, which leads to cracking of the joints. This limits the range of applications for cast aluminium alloys. In this study, an aluminium alloy of the Al-Si system AlSi9 is used to investigate relationships between solidification conditions during the sand casting process, microstructure, mechanical properties, and joinability. The demonstrator is a stepped plate with a minimum thickness of 2.0 mm and a maximum thickness of 4.0 mm, whereas the thickness difference between neighbour steps amounts to 0.5 mm. During casting trials, the solidification rates for different plate steps were measured. The microscopic investigations reveal a correlation between solidification rates and microstructure parameters such as secondary dendrite arm spacing. Furthermore, mechanical properties and the mechanical joinability are investigated.

2013 ◽  
Vol 765 ◽  
pp. 54-58 ◽  
Author(s):  
M.C. Shaji ◽  
Kuriakkattil Kunjayyappan Ravikumar ◽  
M. Ravi ◽  
K. Sukumaran

Al-Si-Cu alloys of the 319 type are age hardenable alloys and offer a good combination of mechanical properties with excellent castability, corrosion resistance and low cost, making these alloys attractive for the automotive industry. The mechanical properties of Al-Si-Cu alloys can be improved by minor alloying additions. The paper describes the attempts to develop a high strength cast aluminium alloy by the addition of Mg to 319 alloy for producing high integrity automobile components. The importance of optimizing the addition of Mg and optimization of the heat treatment parameters, especially the ageing temperature for achieving high strength, are explained. The increase in UTS is accompanied by a decrease in elongation. The elongation is proposed to be increased by the microstructural refinement that can be achieved by squeeze casting.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 59-72
Author(s):  
Yohei Abe ◽  
Ken-ichiro Mori

AbstractTo increase the usage of high-strength steel and aluminium alloy sheets for lightweight automobile body panels, the joinability of sheet combinations including a 780-MPa high-strength steel and an aluminium alloy A5052 sheets by mechanical clinching and self-pierce riveting was investigated for different tool shapes in an experiment. All the sheet combinations except for the two steel sheets by self-pierce riveting, i.e., the two steel sheets, the two aluminium alloy sheets, and the steel-aluminium alloy sheets, were successfully joined by both the joining methods without the gaps among the rivet and the sheets. Then, to show the durability of the joined sheets, the corrosion behaviour and the joint strength of the aged sheets by a salt spray test were measured. The corrosion and the load reduction of the clinched and the riveted two aluminium alloy sheets were little. The corrosion of the clinched two steel sheets without the galvanized layer progressed, and then the load after 1176 h decreased by 85%. In the clinched two galvanized steel sheets, the corrosion progress slowed down by 24%. In the clinched steel and aluminium alloy sheets, the thickness reduction occurred near the minimum thickness of the upper sheet and in the upper surface on the edge of the lower aluminium alloy sheet, whereas the top surface of the upper sheet and the upper surface of the lower sheet were mainly corroded in the riveted joint. The load reduction was caused by the two thickness reductions, i.e., the reduction in the minimum thickness of the upper sheet and the reduction in the flange of the aluminium alloy sheet. Although the load of the clinched steel without the galvanized coating layer and aluminium alloy sheets decreased by about 20%, the use of the galvanized steel sheet brought the decrease by about 11%. It was found that the use of the galvanized steel sheets is effective for the decrease of strength reduction due to corrosion.


2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


2021 ◽  
Vol 410 ◽  
pp. 197-202
Author(s):  
Pavel P. Poleckov ◽  
Olga A. Nikitenko ◽  
Alla S. Kuznetsova

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.


2018 ◽  
Vol 7 (2) ◽  
pp. 927
Author(s):  
Olawale O. Ajibola ◽  
Peter A.Olubambi

Aluminium alloys used in automobile brake master cylinder pistons wear by corrosion due to contamination and chemical reaction of the contacting brake fluid. The study investigates the corrosion of electroless-nickel (EN) deposition enhanced cast aluminium alloy master cylinder piston surfaces immersed in hydraulic brake oil. Cast specimens were produced from the as-received wrought A6061 alloy scrap by sand casting. EN plated as-received and cast aluminium alloys specimens were immersed fully in brake oil for 1680 hours and corrosion rates were determined every 24 hours. Test samples were characterised using the hardness tester, atomic absorption spectrometer, metallurgical photo-microscope, x-ray diffractometer; and SEM with EDX attachment. Both surfaces corroded in the order of electroless-nickel plated cast aluminium alloy (ENCA) < electroless-nickel plated as-received aluminium alloy (ENAA) at 0.0235 and 0.0251 rates (mg/mm2/y) results which showed improvement in the corrosion resistance with significant influence of electroless-nickel coating in reducing corrosion rates of aluminium alloy in brake oil.  


2014 ◽  
Vol 59 (1) ◽  
pp. 385-392
Author(s):  
B. Rams ◽  
A. Pietras ◽  
K. Mroczka

Abstract The article presents application of FSW method for joining elements made of cast aluminium alloys which are hardly weldable with other known welding techniques. Research’s results of plasticizing process of aluminium and moulding of seam weld during different FSW process’ conditions were also presented. Influence of welding parameters, shape and dimensions of tool on weld structure, welding stability and quality was examined. Application of FSW method was exemplified on welding of hemispheres for valves made of cast aluminium alloy EN AC-43200.


1991 ◽  
Vol 7 (5) ◽  
pp. 447-451 ◽  
Author(s):  
R. Mächler ◽  
P. J. Uggowitzer ◽  
C. Solenthaler ◽  
R. M. Pedrazzoli ◽  
M. O. Speidel

Sign in / Sign up

Export Citation Format

Share Document