scholarly journals Metamodels’ Development for High Pressure Die Casting of Aluminum Alloy

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1747
Author(s):  
Eva Anglada ◽  
Fernando Boto ◽  
Maider García de Cortazar ◽  
Iñaki Garmendia

Simulation is a very useful tool in the design of the part and process conditions of high-pressure die casting (HPDC), due to the intrinsic complexity of this manufacturing process. Usually, physics-based models solved by finite element or finite volume methods are used, but their main drawback is the long calculation time. In order to apply optimization strategies in the design process or to implement online predictive systems, faster models are required. One solution is the use of surrogate models, also called metamodels or grey-box models. The novelty of the work presented here lies in the development of several metamodels for the HPDC process. These metamodels are based on a gradient boosting regressor technique and derived from a physics-based finite element model. The results show that the developed metamodels are able to predict with high accuracy the secondary dendrite arm spacing (SDAS) of the cast parts and, with good accuracy, the misrun risk and the shrinkage level. Results obtained in the predictions of microporosity and macroporosity, eutectic percentage, and grain density were less accurate. The metamodels were very fast (less than 1 s); therefore, they can be used for optimization activities or be integrated into online prediction systems for the HPDC industry. The case study corresponds to several parts of aluminum cast alloys, used in the automotive industry, manufactured by high-pressure die casting in a multicavity mold.

Procedia CIRP ◽  
2020 ◽  
Vol 88 ◽  
pp. 509-514
Author(s):  
Mohamad El Mehtedi ◽  
Tommaso Mancia ◽  
Pasquale Buonadonna ◽  
Leonardo Guzzini ◽  
Enrico Santini ◽  
...  

2006 ◽  
Vol 508 ◽  
pp. 555-560 ◽  
Author(s):  
Dániel Molnár ◽  
Jenő Dúl ◽  
Richárd Szabó

By the help of simulation software it is possible to follow and predict the high pressure die casting process. In the Department of Foundry Engineering at the University of Miskolc, Hungary we use both Finite Element- and Finite Difference programs for simulation. In this paper we examine a special specimen, a plate with knobs, witch has point symmetric hot spots and cored parts which effect the characteristic of flow and solidification. We examined the solidification process and the temperature distribution. We determined that the finite element method, because of the meshing and the calculation mode, is more suitable for the simulation of thermal processes.


2009 ◽  
Vol 618-619 ◽  
pp. 419-422 ◽  
Author(s):  
Matthias Jakob ◽  
Yann Queudeville ◽  
Uwe Vroomen ◽  
Andreas Bührig-Polaczek

Within the project “Advanced Processes for Hybrid Metal/Plastic Products” which is part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, established and financed by the German Research Foundation (DFG), new hybrid processes for the production of metal/plastic-composites will be developed. The activities of the Foundry Institute focus on the processing of structural parts with excellent mechanical properties and special integrated functions by combining two original mould operations. In the long term, the metal/plastic-composites are to be produced in a single step process, using one mould and one machine. Beside the combination of the two processes, high pressure die casting and injection moulding, preliminary test geometries will be manufactured in separate moulds. The operation using the two moulds consists in the production of the aluminium metal part in a pressure die casting mould, and subsequently the injection of the plastic component into an injection mould. The basics needed to define the adhesion mechanism between metal and plastic were investigated under experimental conditions in order to determine appropriate results for tests, carried out under the process conditions of high pressure die casting. It is proposed to find and to develop new concepts to join these two different materials. The best bonding mechanism will be chosen to obtain the first metal/plastic hybrid products in the so-called One-Step-Process. A selection of promising results concerning the bond strength of different joining concepts under application terms are presented in this paper.


2015 ◽  
Vol 21 (6) ◽  
pp. 1420-1425 ◽  
Author(s):  
Wei Jiang ◽  
Zhanyi Cao ◽  
Xu Sun ◽  
Haifeng Liu

AbstractHigh-pressure die-casting (HPDC) AZ91 tensile specimens were used to investigate characteristics of gas pores and their effects on mechanical properties of HPDC AZ91 magnesium (Mg) alloy. Combining the stereoscopic morphology of gas pores obtained from a three-dimensional (3D) reconstruction technique with the experimental data from uniaxial tensile testing, we worked on finite element simulation to find the relationship between gas pores and the mechanical properties of HPDC AZ91 Mg alloy. Results indicate that the 2D metallography images have one-sidedness. Moreover, gas pores >100 µm in the center region have a remarkable negative influence on the ultimate tensile strength (UTS) and elongation. With an increase in the size of large gas pores in the center region, the UTS and elongation of the material decreases. In addition, the distribution of gas pores in the specimens and the areal fraction of gas pores >100 µm on cross sections can also affect the UTS and elongation to some extent.


2015 ◽  
Vol 828-829 ◽  
pp. 93-99
Author(s):  
Filipe Pereira ◽  
Martin Williams

The difficulties and issues associated with the economics of the process and die life in casting aluminium alloys, as experienced by the high pressure die casting industry, were reasons behind undertaking this research project. The use of a tungsten alloy able to withstand high temperature process conditions without the welding problems experienced by standard die construction materials, such as H13, was examined in an extensive series of casting trials. The importance of operating dies at elevated temperatures to minimize heat checking has been demonstrated previously, both through theoretical thermal modelling and experimentation. This paper describes both aspects of die life extension and possibilities to reduce the amount of alloy material used in the cast part feed system, including overflows. CSIR intends using the results of this research for further development and application of high temperature die construction materials in high pressure die casting processes of light metal alloys.


Materials ◽  
2003 ◽  
Author(s):  
Weilong Chen

In recent years, high-pressure die-casting magnesium components have been gaining currency worldwide because of the excellent properties that magnesium alloys can offer to meet new product requirements. With the increasing application of magnesium parts worldwide, many research and development projects have been carried out to advance HPDC technology. However, truly optimized mold design and production of defect free castings remains a challenge for die casters. For many HPDC magnesium products, especially those specified for porosity-free and high cosmetic requirement, the challenge not only comes form a lack of a deeper understanding of how molten magnesium alloys fill the mold cavity and form defects, but also from improper preliminary part design. This study proposes a virtual prototyping system that integrates several effective soft and hardware tools for both the part and mold-design engineer to evaluate part manufacturability. Also, investigated in this study are the major causes of those defects that are the predominant cause of rejection of thin walled, leak-free magnesium parts requiring highly cosmetic finishes.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 39
Author(s):  
Anders E. W. Jarfors ◽  
Ruslan Sevastopol ◽  
Karamchedu Seshendra ◽  
Qing Zhang ◽  
Jacob Steggo ◽  
...  

Today, tool life in high pressure die casting (HPDC) is of growing interest. A common agreement is that die life is primarily decided by the thermal load and temperature gradients in the die materials. Conformal cooling with the growth of additive manufacturing has raised interest as a means of extending die life. In the current paper, conformal cooling channels’ performance and effect on the thermal cycle in high-pressure die casting and rheocasting are investigated for conventional HPDC and semisolid processing. It was found that conformal cooling aids die temperature reduction, and the use of die spray may be reduced and support the die-life extension. For the die filling, the increased temperature was possibly counterproductive. Instead, it was found that the main focus for conformal cooling should be focused to manage temperature around the in-let bushing and possibly the runner system. Due to the possible higher inlet pressures for semisolid casting, particular benefits could be seen.


Sign in / Sign up

Export Citation Format

Share Document