scholarly journals Numerical Analysis of Particle Trajectories in a Gas–Powder Jet during the Laser-Based Directed Energy Deposition Process

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2002
Author(s):  
Stanislav Stankevich ◽  
Nikolay Larionov ◽  
Ekaterina Valdaytseva

Based on numerical solutions of the equation of motion of a particle in a gas jet modeled by the Reynolds-averaged Navier–Stokes equations, the features of transporting powder particles to the working zone of laser-based directed energy deposition are investigated. The propagation of a gas jet in a confined space in the presence of obstacles in the form of a substrate and a wall of a part is considered. A solution determining the gas-dynamic parameters of the jet is obtained, and the results of calculating its velocity field are presented. The influence of gas-dynamic parameters on the trajectories of the powder particles is analyzed. It is shown that these parameters determine the amount of model material involved in the formation of the geometry of the part.

Author(s):  
Daniel Andres Rojas Perilla ◽  
Johan Grass Nuñez ◽  
German Alberto Barragan De Los Rios ◽  
Fabio Edson Mariani ◽  
Reginaldo Teixeira Coelho

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Agnieszka Kisielewicz ◽  
Karthikeyan Thalavai Pandian ◽  
Daniel Sthen ◽  
Petter Hagqvist ◽  
Maria Asuncion Valiente Bermejo ◽  
...  

This study investigates the influence of resistive pre-heating of the feedstock wire (here called hot-wire) on the stability of laser-directed energy deposition of Duplex stainless steel. Data acquired online during depositions as well as metallographic investigations revealed the process characteristic and its stability window. The online data, such as electrical signals in the pre-heating circuit and images captured from side-view of the process interaction zone gave insight on the metal transfer between the molten wire and the melt pool. The results show that the characteristics of the process, like laser-wire and wire-melt pool interaction, vary depending on the level of the wire pre-heating. In addition, application of two independent energy sources, laser beam and electrical power, allows fine-tuning of the heat input and increases penetration depth, with little influence on the height and width of the beads. This allows for better process stability as well as elimination of lack of fusion defects. Electrical signals measured in the hot-wire circuit indicate the process stability such that the resistive pre-heating can be used for in-process monitoring. The conclusion is that the resistive pre-heating gives additional means for controlling the stability and the heat input of the laser-directed energy deposition.


2021 ◽  
Vol 65 ◽  
pp. 407-417
Author(s):  
Geng Li ◽  
Kyle Odum ◽  
Curtis Yau ◽  
Masakazu Soshi ◽  
Kazuo Yamazaki

2021 ◽  
Vol 53 ◽  
pp. 576-584
Author(s):  
Kandice S.B. Ribeiro ◽  
Henrique H.L. Núñez ◽  
Jason B. Jones ◽  
Peter Coates ◽  
Reginaldo T. Coelho

Sign in / Sign up

Export Citation Format

Share Document