scholarly journals Mass Spectrometry-Based Flavor Monitoring of Peruvian Chocolate Fabrication Process

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 71
Author(s):  
Stephanie Michel ◽  
Luka Franco Baraka ◽  
Alfredo J. Ibañez ◽  
Madina Mansurova

Flavor is one of the most prominent characteristics of chocolate and is crucial in determining the price the consumer is willing to pay. At present, two types of cocoa beans have been characterized according to their flavor and aroma profile, i.e., (1) the bulk (or ordinary) and (2) the fine flavor cocoa (FFC). The FFC has been distinguished from bulk cocoa for having a great variety of flavors. Aiming to differentiate the FFC bean origin of Peruvian chocolate, an analytical methodology using gas chromatography coupled to mass spectrometry (GC-MS) was developed. This methodology allows us to characterize eleven volatile organic compounds correlated to the aromatic profile of FFC chocolate from this geographical region (based on buttery, fruity, floral, ethereal sweet, and roasted flavors). Monitoring these 11 flavor compounds during the chain of industrial processes in a retrospective way, starting from the final chocolate bar towards pre-roasted cocoa beans, allows us to better understand the cocoa flavor development involved during each stage. Hence, this methodology was useful to distinguish chocolates from different regions, north and south of Peru, and production lines. This research can benefit the chocolate industry as a quality control protocol, from the raw material to the final product.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana M. Calvo ◽  
Blanca L. Botina ◽  
Maria C. García ◽  
William A. Cardona ◽  
Andrea C. Montenegro ◽  
...  

AbstractSeveral research efforts on cocoa have been focused on parameters for controlling the transformation process to guarantee homogeneity and quality of cocoa beans, the main raw material in the chocolate industry. The main changes that determine the final quality of cocoa—and also the product’s homogeneity—occur during fermentation, given the great number of factors that affect the process. This research seeks to identify the most relevant factors affecting quality in order to offer higher-quality and more homogeneous cocoa for the chocolate industry. The dynamics of the fermentation process were observed in three contrasting locations, monitoring different variables and evaluating the final quality of the cocoa. Results show that temperature and pH profile are the key factors to be monitored and controlled in order to achieve high-quality cocoa beans.


2021 ◽  
Vol 8 ◽  
Author(s):  
Manuel Oliva-Cruz ◽  
Pati Llanina Mori-Culqui ◽  
Aline C. Caetano ◽  
Malluri Goñas ◽  
Nuri C. Vilca-Valqui ◽  
...  

Cocoa beans are the raw material for the chocolate industry. In this study, the total fat contents and fatty acid profiles of fine-aroma cocoa beans of 30 cocoa ecotypes from northeastern Peru were evaluated. Results showed that SJJ-1 and ACJ-11 ecotypes from San Martin and Amazonas regions, respectively, presented highest percentages of total fat with an average of 30.49%. With respect to fatty acid profiles, it was found that cocoa ecotypes are composed of 10 fatty acids (C14:0, C16:0, C16:1, C18:0, C17:0, C18:1, C18:2, C18:3, C20:0, and C22:0); based on this profile, 5 clusters were determined. Cluster 5 had the highest content of C17:0 fatty acid (0.47%); however, the clusters 1, 2, 3, and 4 had the lowest content of this fatty acid (0.37%, 0.32%, 0.32%, respectively). The clusters 3 and 4 showed the highest content of C16:0 fatty acid (31.13% y 28.97%, respectively). The clusters 3 and 5 contained the highest content of the acid C18:1 (27.08% y 26.82%, respectively). The PCA found that C18:0 and C20:0 fatty acids are correlated, and are fundamentally opposite to C18:1, C16:0, and C18:3 acids. These results may be useful in identifying raw material for the development of specialty chocolates with better nutritional value than traditional cocoa.


2020 ◽  
Vol 9 (8) ◽  
pp. e975986882
Author(s):  
Afonso Henrique de Oliveira Júnior ◽  
Ana Luiza Coeli Cruz Ramos ◽  
Mayara Neves Santos Guedes ◽  
Miriã Cristina Pereira Fagundes ◽  
Rodinei Augusti ◽  
...  

The quality cocoa derived products have increasingly received greater recognition and relevance both by consumers and producers. Cocoa beans are the main components responsible for much of the cocoa agro-industrial chain being currently valued for the bioactive properties found in the species' by-products, creating a great interest in exploring the potentials of cocoa. Much of the work that aims to evaluate the compounds found in the fruit's beans employ HPLC, UHPLC and LC-MS. In this work Paper Spray Mass Spectrometry (PS-MS) was employed as a method for characterizing and bioprospecting the chemical profile of cocoa beans (Theobroma cacao) of the forrasteiro variety grown in the Trans-Amazonian region of the Brazilian State of Pará. Methanolic extracts were prepared from samples of cocoa beans and evaluated in the negative and positive ionization modes. In the positive ionization mode it was possible to identify 11 compounds, comprising the classes of methylxanthines (18.2%), phenylpropanoids (9.1%), steroids (27.3%) and flavonoids (45.5%), while in the negative ionization mode, it was possible to identify 55 compounds among hydroxybenzoic acids (16.4%), phenylpropanoids (20.0%), flavonoids (52.7%), sugars and glycosides (10.9%). PS-MS proved to be an effective method for the evaluation of cocoa bean samples, being able to identify a total of sixty-six compounds. The bioactive properties attributed to cocoa were confirmed in the samples analyzed by the compounds identified through PS-MS whilst also indicating the quality of the raw material and describing its chemical profile, contributing to a greater understanding of its attributes.


TecnoLógicas ◽  
2021 ◽  
Vol 24 (50) ◽  
pp. e1654
Author(s):  
Karen Sánchez ◽  
Jorge Bacca ◽  
Laura Arévalo-Sánchez ◽  
Henry Arguello ◽  
Sergio Castillo

Cocoa beans are the most important raw material for the chocolate industry and an essential product for the economy of tropical countries such as Colombia. Their price mainly depends on their quality, which is determined by various aspects, such as good agricultural practices, their harvest point, and level of fermentation. The entities that regulate the international marketing of cocoa beans have been encouraging the development of new classification methods that, compared to current techniques, could save time, reduce waste, and increase the number of evaluated beans. In particular, hyperspectral images are a novel tool for food quality control. However, studies that have examined some quality parameters of cocoa using spectroscopy also involve the chemical evaluation of cocoa powder and liquor and the interior of the beans, which implies an invasive analysis, longer times, and waste generation. Therefore, in this paper, we assess the quality of cocoa beans based on their level of fermentation using a noninvasive system to obtain hyperspectral information, as well as fast image processing and spectral classification techniques. We obtained hyperspectral images of 90 cocoa beans in the range between 350 and 950 nm in an optical laboratory. In addition, each cocoa bean was classified according to its fermentation level: slightly fermented (SF), correctly fermented (CF), and highly fermented (HF). We compared this classification with that carried out by experts from the Colombia National Federation of Cocoa Growers and reported in the Colombian technical standard No. 1252. The results show that the level of fermentation of dried cocoa beans can be estimated using noninvasive hyperspectral image acquisition and processing techniques.


Sign in / Sign up

Export Citation Format

Share Document