scholarly journals Changes in the Elemental and Metabolite Profile of Wheat Phloem Sap during Grain Filling Indicate a Dynamic between Plant Maturity and Time of Day

Metabolites ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 53 ◽  
Author(s):  
Lachlan Palmer ◽  
James Stangoulis

The long distance transport of Fe and Zn in the phloem sap of wheat (Triticum aestivum L.) is the key route for seed supply, due to wheat having a xylem discontinuity. To date, our knowledge is limited on Fe and Zn homeostasis in the phloem sap during the reproductive and grain filling stages. With the use of aphid stylectomy to collect samples of phloem sap, we explored maturity and morning versus afternoon (within-day) changes in nutrient and metabolite profiles. Phloem exudate was collected from a wheat breeding line, SAMNYT16, at three times during the grain filling period and at both midday and mid-afternoon. There were significant changes in the concentration of Mg, K, Fe and Zn during the course of grain loading and there were also significant within-day differences for Fe and K concentrations in the phloem exudate during the early phases of grain development. We found that, for K and Fe, there was an increase of 1.1- and 1.4-fold, respectively, for samples taken prior to midday to those from mid-afternoon. There was also a significant decrease in K, Fe and Zn phloem sap concentration of 1.5-, 1.4- and 1.1-fold, respectively, from the start of peak grain loading to the end of grain loading. Of the 79 metabolites detected within samples of phloem exudate, 43 had significant maturity differences and 38 had significant within-day variability. Glutamine was found to increase by 3.3–5.9-fold from midday to mid-afternoon and citric acid was found to decrease by 1.6-fold from the start of grain loading to the end of grain loading. These two metabolites are of interest as they can complex metal ions and may play a role in long distance transport of metal ions. The work presented here gives further insight into the complex composition of the phloem sap and variability that can occur during the day and also with increasing maturity.

Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 129 ◽  
Author(s):  
Karen J. Kloth ◽  
Richard Kormelink

Combining plant resistance against virus and vector presents an attractive approach to reduce virus transmission and virus proliferation in crops. Restricted Tobacco-etch virus Movement (RTM) genes confer resistance to potyviruses by limiting their long-distance transport. Recently, a close homologue of one of the RTM genes, SLI1, has been discovered but this gene instead confers resistance to Myzus persicae aphids, a vector of potyviruses. The functional connection between resistance to potyviruses and aphids, raises the question whether plants have a basic defense system in the phloem against biotic intruders. This paper provides an overview on restricted potyvirus phloem transport and restricted aphid phloem feeding and their possible interplay, followed by a discussion on various ways in which viruses and aphids gain access to the phloem sap. From a phloem-biological perspective, hypotheses are proposed on the underlying mechanisms of RTM- and SLI1-mediated resistance, and their possible efficacy to defend against systemic viruses and phloem-feeding vectors.


2013 ◽  
Vol 13 (3) ◽  
pp. 8101-8152
Author(s):  
M. Yang ◽  
R. Beale ◽  
T. Smyth ◽  
B. Blomquist

Abstract. We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1σ) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.


Author(s):  
James Cronshaw

Long distance transport in plants takes place in phloem tissue which has characteristic cells, the sieve elements. At maturity these cells have sieve areas in their end walls with specialized perforations. They are associated with companion cells, parenchyma cells, and in some species, with transfer cells. The protoplast of the functioning sieve element contains a high concentration of sugar, and consequently a high hydrostatic pressure, which makes it extremely difficult to fix mature sieve elements for electron microscopical observation without the formation of surge artifacts. Despite many structural studies which have attempted to prevent surge artifacts, several features of mature sieve elements, such as the distribution of P-protein and the nature of the contents of the sieve area pores, remain controversial.


Sign in / Sign up

Export Citation Format

Share Document