scholarly journals Integration of Horizontal and Vertical Microfluidic Modules for Core-Shell Droplet Generation and Chemical Application

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 613 ◽  
Author(s):  
Dong Hyun Yoon ◽  
Yoshito Nozaki ◽  
Daiki Tanaka ◽  
Tetsushi Sekiguchi ◽  
Shuichi Shoji

This paper presents a method for utilizing three-dimensional microfluidic channels fully to realize multiple functions in a single device. The final device structure was achieved by combining three independent modules that consisted of horizontal and vertical channels. The device allowed for the one-step generation of water-in-oil-in-water droplets without the need for partial treatment of the polydimethylsiloxane channel surface using separate modules for generating water-in-oil droplets on the horizontal plane and oil-in-water droplets on the vertical plane. The second vertically structured module provided an efficient flow for the generation of highly wettable liquid droplets, and tuning of the first horizontally structured module enabled different modes of inner-core encapsulation within the oil shell. The successful integration of the vertical and horizontal channels for core-shell droplet generation and the chemical synthesis of a metal complex within the droplets were evaluated. The proposed approach of integrating independent modules will expand and enhance the functions of microfluidic platforms.

Author(s):  
Lung-Hsin Hung ◽  
Abraham P. Lee

This paper presents an optimized method for droplet generation in PDMS microchannels. With controllable PDMS surface hydrophobicity and hydrophobicity recovery, alternative component droplets can be generated as anticipated. Different surface hydrophobicity results in different droplet generation patterns. Monodispersed water-in-oil and oil-in-water droplets are generated from hydrophilic and hydrophobic surface respectively. Nearly hydrophilic surface (30°<θ<50°) results in long-tailed droplets and less hydrophilic surface (70°<θ<80°) results in stream mixing. Discussion of methods to loss and recovery hydrophobicity of PDMS also included.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6374-6382
Author(s):  
Jie Song ◽  
Siqi Chen ◽  
Xu Zhao ◽  
Junbo Cheng ◽  
Yanli Ma ◽  
...  

With oligomeric proanthocyanidins (OPCs) as the outer shell and ultraviolet absorbers (OMC) as the inner core, OMC/OPCs composite microcapsules were prepared and characterized, and their UV resistance was studied.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
C. Kons ◽  
Manh-Huong Phan ◽  
Hariharan Srikanth ◽  
D. A. Arena ◽  
Zohreh Nemati ◽  
...  

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Germán Vogel ◽  
Hongming Zhang ◽  
Yongcai Shen ◽  
Shuyu Dai ◽  
Youwen Sun ◽  
...  

Spatial profiles of impurity emission measurements in the extreme ultraviolet (EUV) spectroscopic range in radiofrequency (RF)-heated discharges are combined with one-dimensional and three-dimensional transport simulations to study the effects of resonant magnetic perturbations (RMPs) on core impurity accumulation at EAST. The amount of impurity line emission mitigation by RMPs appears to be correlated with the ion Z for lithium, carbon, iron and tungsten monitored, i.e. stronger suppression of accumulation for heavier ions. The targeted effect on the most detrimental high-Z impurities suggests a possible advantage using RMPs for impurity control. Profiles of transport coefficients are calculated with the STRAHL one-dimensional impurity transport code, keeping $\nu /D$ fixed and using the measured spatial profiles of $\textrm{F}{\textrm{e}^{20 + }}$ , $\textrm{F}{\textrm{e}^{21 + }}$ and $\textrm{F}{\textrm{e}^{22 + }}$ to disentangle the transport coefficients. The iron diffusion coefficient ${D_{\textrm{Fe}}}$ increases from $1.0- 2.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ to $1.5- 3.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ from the core region to the edge region $(\rho \gt 0.5)$ after the onset of RMPs. Meanwhile, an inward pinch of iron convective velocity ${\nu _{\textrm{Fe}}}$ decreases in magnitude in the inner core region and increases significantly in the outer confined region, simultaneously contributing to preserving centrally peaked $\textrm{Fe}$ profiles and exhausting the impurities. The ${D_{\textrm{Fe}}}$ and ${\nu _{\textrm{Fe}}}$ variations lead to reduced impurity contents in the plasma. The three-dimensional edge impurity transport code EMC3-EIRENE was also applied for a case of RMP-mitigated high-Z accumulation at EAST and compared to that of low-Z carbon. The exhaust of ${\textrm{C}^{6 + }}$ toward the scrape-off layer accompanying an overall suppression of heavier ${\textrm{W}^{30 + }}$ is observed when using RMPs.


Nanoscale ◽  
2013 ◽  
Vol 5 (17) ◽  
pp. 7906 ◽  
Author(s):  
Qin-qin Xiong ◽  
Jiang-ping Tu ◽  
Xin-hui Xia ◽  
Xu-yang Zhao ◽  
Chang-dong Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document