Optimization of Droplet Generation by Controlling PDMS Surface Hydrophobicity

Author(s):  
Lung-Hsin Hung ◽  
Abraham P. Lee

This paper presents an optimized method for droplet generation in PDMS microchannels. With controllable PDMS surface hydrophobicity and hydrophobicity recovery, alternative component droplets can be generated as anticipated. Different surface hydrophobicity results in different droplet generation patterns. Monodispersed water-in-oil and oil-in-water droplets are generated from hydrophilic and hydrophobic surface respectively. Nearly hydrophilic surface (30°<θ<50°) results in long-tailed droplets and less hydrophilic surface (70°<θ<80°) results in stream mixing. Discussion of methods to loss and recovery hydrophobicity of PDMS also included.

1995 ◽  
Vol 73 (S1) ◽  
pp. 609-615 ◽  
Author(s):  
Ralph L. Nicholson ◽  
Hitoshi Kunoh

The establishment of a fungal pathogen on the surface of its host is essential to the success of the infection process. For many fungi, establishment on the host is an active process that may depend on recognition of the host surface through chemical or topographic signals. Events that allow for establishment may be considered to represent the "preparation of the infection court" by the pathogen. This sometimes involves the adhesion of the pathogen to the host and possibly the alteration of the host's surface topography or chemistry. Adhesion is often presumed to be a single, chemically mediated event associated with germ tube or appressorium formation. However, adhesion of ungerminated propagules may also occur, and evidence suggests that it is mediated by the release of adhesive materials directly from the propagule upon contact with a suitable substratum. Fungi may require either a hydrophobic or a hydrophilic surface to initiate the infection process. The barley powdery mildew pathogen, Erysiphe graminis, requires a hydrophilic surface for appressorium formation, yet the barley leaf is extremely hydrophobic. The problem is resolved by the release of an exudate from conidia that makes the hydrophobic leaf surface hydrophilic. In contrast, Colletotrichum graminicola requires a hydrophobic surface for the initiation of its infection process. Ungerminated conidia of this fungus release materials that allow for the rapid adhesion of conidia, which ensures that germination and appressorium formation occur, initiating the infection process. For both fungi, these events happen well in advance of germination and establish the pathogen at the site of the infection court. Key words: adhesion, cuticle, cutinase, surface hydrophobicity, infection process.


RSC Advances ◽  
2021 ◽  
Vol 11 (56) ◽  
pp. 35653-35662
Author(s):  
Ampol Kamnerdsook ◽  
Ekachai Juntasaro ◽  
Numfon Khemthongcharoen ◽  
Mayuree Chanasakulniyom ◽  
Witsaroot Sripumkhai ◽  
...  

(a) Droplet encapsulation efficiency & inner and outer diameters of water-in-oil-in-water droplets at various frequency ratios and flow rate ratios and (b) Images of water-in-oil-in-water droplets over a frequency-ratio range of fr = 0.73–1.30


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 613 ◽  
Author(s):  
Dong Hyun Yoon ◽  
Yoshito Nozaki ◽  
Daiki Tanaka ◽  
Tetsushi Sekiguchi ◽  
Shuichi Shoji

This paper presents a method for utilizing three-dimensional microfluidic channels fully to realize multiple functions in a single device. The final device structure was achieved by combining three independent modules that consisted of horizontal and vertical channels. The device allowed for the one-step generation of water-in-oil-in-water droplets without the need for partial treatment of the polydimethylsiloxane channel surface using separate modules for generating water-in-oil droplets on the horizontal plane and oil-in-water droplets on the vertical plane. The second vertically structured module provided an efficient flow for the generation of highly wettable liquid droplets, and tuning of the first horizontally structured module enabled different modes of inner-core encapsulation within the oil shell. The successful integration of the vertical and horizontal channels for core-shell droplet generation and the chemical synthesis of a metal complex within the droplets were evaluated. The proposed approach of integrating independent modules will expand and enhance the functions of microfluidic platforms.


2013 ◽  
Vol 21 (04) ◽  
pp. 1350028 ◽  
Author(s):  
SEOL HA KIM ◽  
JUN YOUNG KANG ◽  
HO SEON AHN ◽  
HANG JIN JO ◽  
MOO HWAN KIM

Water droplets, 2 mm in diameter, were allowed to fall freely onto hydrophobic and hydrophilic heated surfaces, and their impacts were imaged using high-speed cameras to investigate the droplet dynamics and heat transfer. As the heating power increased, the water droplets evaporated faster, eventually hovering over the surface due to the formation of a boiling film when the Leidenfrost point (LFP) was reached. The heat transfer from the surface into the droplet was evaluated, and LFP transition phenomena were investigated using time-resolved imaging of both side and bottom views. The hydrophilic surface showed a higher heat transfer rate and a higher LFP than the hydrophobic surface did. Furthermore, the droplet dynamics revealed very different shapes depending on the surface wettability; vigorous bubble nucleation and growth was observable for the hydrophilic surface, but not the hydrophobic surface. The rebound behavior of the droplets was analyzed based on the droplet free energy, including kinetic, potential, and surface energy terms.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1321
Author(s):  
Cheng-Yun Peng ◽  
Chia-Hung Dylan Tsai

Droplet manipulation is important in the fields of engineering, biology, chemistry, and medicine. Many techniques, such as electrowetting and magnetic actuation, have been developed for droplet manipulation. However, the fabrication of the manipulation platform often takes a long time and requires well-trained skills. Here we proposed a novel method that can directly generate and manipulate droplets on a polymeric surface using a universal plasma jet. One of its greatest advantages is that the jet can tremendously reduce the time for the platform fabrication while it can still perform stable droplet manipulation with controllable droplet size and motion. There are two steps for the proposed method. First, the universal plasma jet is set in plasma mode for modifying the manipulation path for droplets. Second, the jet is switched to air-jet mode for droplet generation and manipulation. The jetted air separates and pushes droplets along the plasma-treated path for droplet generation and manipulation. According to the experimental results, the size of the droplet can be controlled by the treatment time in the first step, i.e., a shorter treatment time of plasma results in a smaller size of the droplet, and vice versa. The largest and the smallest sizes of the generated droplets in the results are about 6 µL and 0.1 µL, respectively. Infrared spectra of absorption on the PDMS surfaces with and without the plasma treatment are investigated by Fourier-transform infrared spectroscopy. Tests of generating and mixing two droplets on a PDMS surface are successfully achieved. The aging effect of plasma treatment for the proposed method is also discussed. The proposed method provides a simple, fast, and low-cost way to generate and manipulate droplets on a polymeric surface. The method is expected to be applied to droplet-based cell culture by manipulating droplets encapsulating living cells and towards wall-less scaffolds on a polymeric surface.


2016 ◽  
Vol 879 ◽  
pp. 2524-2527
Author(s):  
Masazumi Okido ◽  
Kensuke Kuroda

Surface hydrophilicity is considered to have a strong influence on the biological reactions of bone-substituting materials. However, the influence of a hydrophilic or hydrophobic surface on the osteoconductivity is not completely clear. In this study, we produced super-hydrophilic and hydrophobic surface on Ti-and Zr-alloys. Hydrothermal treatment at 180 oC for 180 min. in the distilled water and immersion in x5 PBS(-) brought the super-hydrophilic surface (water contact angle < 10 (deg.)) and heat treatment of as-hydrothermaled the hydrophobic surface. The osteoconductivity of the surface treated samples with several water contact angle was evaluated by in vivo testing. The surface properties, especially water contact angle, strongly affected the osteoconductivity and protein adsorbability, and not the surface substance.


2011 ◽  
Vol 11 (9) ◽  
pp. 4191-4207 ◽  
Author(s):  
B. J. Murray ◽  
S. L. Broadley ◽  
T. W. Wilson ◽  
J. D. Atkinson ◽  
R. H. Wills

Abstract. Clouds composed of both ice particles and supercooled liquid water droplets exist at temperatures above ~236 K. These mixed phase clouds, which strongly impact climate, are very sensitive to the presence of solid particles that can catalyse freezing. In this paper we describe experiments to determine the conditions at which the clay mineral kaolinite nucleates ice when immersed within water droplets. These are the first immersion mode experiments in which the ice nucleating ability of kaolinite has been determined as a function of clay surface area, cooling rate and also at constant temperatures. Water droplets containing a known amount of clay mineral were supported on a hydrophobic surface and cooled at rates of between 0.8 and 10 K min−1 or held at constant sub-zero temperatures. The time and temperature at which individual 10–50 μm diameter droplets froze were determined by optical microscopy. For a cooling rate of 10 K min−1, the median nucleation temperature of 10–40 μm diameter droplets increased from close to the homogeneous nucleation limit (236 K) to 240.8 ± 0.6 K as the concentration of kaolinite in the droplets was increased from 0.005 wt% to 1 wt%. This data shows that the probability of freezing scales with surface area of the kaolinite inclusions. We also show that at a constant temperature the number of liquid droplets decreases exponentially as they freeze over time. The constant cooling rate experiments are consistent with the stochastic, singular and modified singular descriptions of heterogeneous nucleation; however, freezing during cooling and at constant temperature can be reconciled best with the stochastic approach. We report temperature dependent nucleation rate coefficients (nucleation events per unit time per unit area) for kaolinite and present a general parameterisation for immersion nucleation which may be suitable for cloud modelling once nucleation by other important ice nucleating species is quantified in the future.


2003 ◽  
Vol 9 (6) ◽  
pp. 409-419 ◽  
Author(s):  
G. G. Palazolo ◽  
F. E. Mitidieri ◽  
J. R. Wagner

The capacity of both native (NSI) and denatured (DSI) soybean isolates to stabilise oil in water emulsions under controlled shear stress was evaluated. The effect of protein concentration, thermal treatment of proteins and salt addition were studied. Sodium caseinate (SC) was used as standard protein. Emulsions prepared with NSI and SC were stable against coalescence in the whole range of protein concentration (1-10 mg/mL) in spite of showing different interfacial behaviour. The interfacial pressure of DSI was higher than NSI, according to its high dissociation degree and aromatic surface hydrophobicity. However, the emulsions prepared with this sample were unstable in the whole range of bulk protein concentrations. When NaCl was added, higher coalescence was obtained with NSI and SC emulsions at low protein concentrations, and stabilisation was reached only by increasing protein concentrations. At high protein concentrations(>5 mg/mL), DSI emulsions were stable in presence of salt, due to the formation of rigid flocs resistant to agitation. Droplet size distribution, microstructure and flocculation tendency of droplets explained the differences in coalescence of NSI, DSI and SC emulsions.


2020 ◽  
Vol 35 ◽  
pp. 18-28
Author(s):  
Muhammad Rubayat Bin Shahadat ◽  
A.K.M.M. Morshed

Non-equilibrium molecular dynamics simulations have been employed to study the explosive boiling phenomena of water over a hot copper plate. The molecular system was comprised of three sections: solid copper wall, liquid water, and water vapor. A few layers of the liquid water were placed on the solid Cu surface. The rest of the simulation box was filled with water vapor. Initially, the water molecules were equilibrated by using Berendsen thermostat at 298 K. Then heat was given to the copper plate at different temperatures so that explosive boiling occurs. After achieving the equilibrium by performing the previous two steps, the liquid water at 298 K is suddenly dropped on the hot plate. NVE ensemble was used in the simulation and the temperature of the copper plate was controlled to different temperatures with phantom atom thermostat. Four temperatures (400K, 500K, 650 K and 1000K) were taken to study the explosive boiling. The simulation results show that, the explosive boiling temperature of water on Cu plate is 500 K temperature. At this point, the energy flux was found 1.79x108 J/m3 which is very promising with the experimental results. Moreover, if the temperature of the surface was increased the explosive boiling occurred at a faster rate. The simulation results also show that explosive boiling occurs earlier for the hydrophilic surface than hydrophobic surface as for the hydrophilic surface the water attracted the Cu plate more than the hydrophobic surface and so the amount of energy transfer is more for the hydrophilic surface.


Sign in / Sign up

Export Citation Format

Share Document