scholarly journals Spatial Equivalent Circuit Model for Simulation of On-Chip Thermoelectric Harvesters

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 574
Author(s):  
Simon Lineykin ◽  
Moshe Sitbon ◽  
Alon Kuperman

Interest in autonomous low-power energy sources has risen with the development and widespread use of devices with very low energy consumption. Interest in thermoelectric harvesters has increased against this background. Thermoelectric harvesters, especially harvesters on-chip, have peculiar properties related to the thermal route, thermal transients, and spatial temperature distribution within the chip. A behavioral model of the harvester is required for engineers to successfully develop voltage converters with maximum power point tracking and energy storage units. There are accurate models based on the finite element method, but these models are usually not compatible with simulators of electrical circuits, and therefore are not convenient for designers. Existing equivalent circuit models fit this requirement, but usually do not consider many parameters. This article proposes an original method that allows simulating spatial thermoelectric processes by analogy with the finite difference method, using electrical circuits simulations software. The study proposes a complete methodology for building the model and examples of simulations of one-, two- and three-dimensional problems, as well as examples of simulation of macro problems in the presence of external thermal and electrical devices, such as heatsink and electrical load.

2017 ◽  
Vol 38 (6) ◽  
pp. 065004
Author(s):  
Hansheng Wang ◽  
Weiliang He ◽  
Minghui Zhang ◽  
Lu Tanh

2020 ◽  
pp. 0309524X2093513
Author(s):  
Nadia A Elsonbaty ◽  
Mohamed A Enany ◽  
Mahmoud Elymany

This article proposes three new maximum power point tracking control schemes for permanent magnet synchronous generators in variable-speed wind energy conversion systems. Unlike previously control methods based on traditional voltage source fed equivalent circuit, a current source fed equivalent circuit is proposed where an efficient maximum power point tracking–based load angle control can simply be achieved. The three new control strategies are based on concurrent load angle control–rotor field–oriented method at desired speeds. Each strategy has its own load angle methodology. The first strategy applies constant flux control technique. The second one is based on keeping constant 90° torque angle (zero d-axis current control) method. Finally, the third strategy presents an optimum maximum power point tracking at unity power factor with achieving the favorite linear relationship between the generator stator current and optimum torque. A unified detailed phasor diagram is provided from which the phasor diagram for any of the aforementioned control techniques is produced. Mathematical analysis and MATLAB Simulink model results are presented for each control pattern. Effective validation for the proposed mathematical models is approved.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 236 ◽  
Author(s):  
Wonseok Choe ◽  
Jinho Jeong

A waveguide-to-microstrip transition is an essential component for packaging integrated circuits (ICs) in rectangular waveguides, especially at millimeter-wave and terahertz (THz) frequencies. At THz frequencies, the on-chip transitions, which are monolithically integrated in ICs are preferred to off-chip transitions, as the former can eliminate the wire-bonding process, which can cause severe impedance mismatch and additional insertion loss of the transitions. Therefore, on-chip transitions can allow the production of low cost and repeatable THz modules. However, on-chip transitions show limited performance in insertion loss and bandwidth, more seriously, this is an in-band resonance issue. These problems are mainly caused by the substrate used in the THz ICs, such as an indium phosphide (InP), which exhibits a high dielectric constant, high dielectric loss, and high thickness, compared with the size of THz waveguides. In this work, we propose a broadband THz on-chip transition using a dipole antenna with an integrated balun in the InP substrate. The transition is designed using three-dimensional electromagnetic (EM) simulations based on the equivalent circuit model. We show that in-band resonances can be induced within the InP substrate and also prove that backside vias can effectively eliminate these resonances. Measurement of the fabricated on-chip transition in 250 nm InP heterojunction bipolar transistor (HBT) technology, shows wideband impedance match and low insertion loss at H-band frequencies (220–320 GHz), without in-band resonances, due to the properly placed backside vias.


2015 ◽  
Vol 62 (12) ◽  
pp. 3957-3964 ◽  
Author(s):  
Zongzhi Gao ◽  
Kai Kang ◽  
Zhengdong Jiang ◽  
Yunqiu Wu ◽  
Chenxi Zhao ◽  
...  

2014 ◽  
Vol 12 ◽  
pp. 29-34 ◽  
Author(s):  
K. Bavelis ◽  
E. Gjonaj ◽  
T. Weiland

Abstract. The electrical transport in zinc oxide (ZnO) varistors is analyzed using microstructural material modeling. The fully three dimensional current distribution is computed by means of a nonlinear equivalent circuit model representing the assembly of current carrying grains and grain boundaries of the material. The investigation focuses on the phenomenon of current filamentation due to inhomogeneities of the varistor microstructure. Numerical results highlight the importance of 3-D percolation effects in the modeling of varistor currents as well as that of the grain bulk resistivity which so far has been neglected in previous studies.


2006 ◽  
Vol 153 (6) ◽  
pp. 525 ◽  
Author(s):  
C.C. Lim ◽  
K.S. Yeo ◽  
K.W. Chew ◽  
C.Y. Tan ◽  
M.A. Do ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document