zno varistors
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 39)

H-INDEX

40
(FIVE YEARS 5)

2021 ◽  
Vol 55 (13) ◽  
pp. 135106
Author(s):  
Xia Zhao ◽  
Men Guo ◽  
Yuandong Wen ◽  
Weidong Shi ◽  
Boyu Zhang ◽  
...  

Abstract The defect distributions in ZnO varistors mixed with Bi2O3, NiO, MnCO3, Co2O3, and SiO2 after doping Sb2O3 were investigated, based on the Jonscher’s universal power law and the Dissado–Hill model. The microstructures were investigated using x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and x-ray photoelectron spectrometer. The capacitance–voltage (C–V) method was utilized to obtain the parameters of the double Schottky barrier. The dielectric spectra were analyzed to extract the parameters of defect distribution. The current density–electric field (J–E) characteristics were measured to obtain the parameters of electrical properties. We found that with increasing Sb2O3 content, the ZnO grain size distribution become more homogeneous in the Sb2O3-doped ZnO varistors; the density Zn i × is decreased; except for less homogeneous V O × , more homogeneous distributions of Zn i ∙ in the depletion layers and the extrinsic defects at the interfaces are achieved in the Sb2O3-doped ZnO varistors. Therefore, the enhancement in the electrical properties was achieved by doping Sb2O3 due to the increased number of active grain boundaries per unit volume, i.e. the increased breakdown field and nonlinear coefficient, and the decreased leakage current density. The results of this study suggest that the Jonscher’s universal power law and the Dissado–Hill model can be effectively used to analyze defect distributions in varistor ceramics.


2021 ◽  
Vol 11 (20) ◽  
pp. 9410
Author(s):  
Jaka Dugar ◽  
Awais Ikram ◽  
Franci Pušavec

Sintered zinc oxide (ZnO) ceramic is a fragile and difficult-to-cut material, so finishing operations demand handling cautious and accurate surface tolerances by polishing, grinding, or machining. The conventional machining methods based on grinding and lapping offer limited productivity and high scalability; therefore, their incapacity to prepare tight tolerances usually end up with uncontrolled edge chipping and rough surfaces in the final products. This study investigates microstructural features with surface roughness in a comparative mode for conventional milling and abrasive waterjet cutting (AWJ). Edge topography and roughness maps are presented in this study to weigh the benefits of AWJ cutting over the conventional material removal methods by altering the feed rates. The porosity analysis implies that the differences during the multi-channel processing of varistors, which tend to alter the microstructure, should in turn exhibit a different response during cutting. The surface roughness, edge contours, and porosity generation due to shear forces are interpreted with the help of 3D optical and electron microscopy. The results demonstrate that the surface microstructure can have a noteworthy impact on the machining/cutting characteristics and functionality, and in addition, mechanical properties of ZnO varistors can fluctuate with non-uniform microstructures.


2021 ◽  
Vol 133 ◽  
pp. 105945
Author(s):  
Zhuyun Li ◽  
Xin Ren ◽  
Xin Wang ◽  
Wanli You ◽  
Meilian Zhong ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1422
Author(s):  
Jaka Dugar ◽  
Awais Ikram ◽  
Franci Pušavec

The sintered zinc oxide (ZnO) electro-ceramics are a brittle class of hard-to-cut materials such that shaping them with the post-finishing operations necessitates careful handling and precision machining. The conventional machining approach using the grinding and lapping processes represents limited productivity, an inability to produce the required geometries and frequent uncontrolled chipping of the edges of the final products. This study thus investigates the turning performance of dense sintered ZnO varistors and chip formations to obtain the parametric range (cutting mechanism) which causes the chipping or the trans-granular/sudden failure in these brittle materials. With the analysis of the cutting tool vibration in relation to the machining parameters (f and VC), the vibration-induced chipping correlations are made and interlinked with the occurrence of grain pull-out during the turning operation. The results show that the reflected vibratory motion of the tools is directly correlated with the chip formation mechanisms in the turning of ZnO ceramics and thus provide robust measurements for quality assurance in final products.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4011
Author(s):  
Xia Zhao ◽  
Haibin Shen ◽  
Men Guo ◽  
Ziming He ◽  
Yupeng Li ◽  
...  

Lowered power loss and asymmetrically electrical parameters are reported in the DC aging of Co2O3-doped ZnO varistors in this paper. Based on the frequency domain dielectric responses of the pristine and degraded samples, the present study explores the roles of point defects in the aging process via dielectric relaxations and their parameters. It is found that breakdown field increased more in the positive direction than the negative direction. Nonlinearity increased in the positive direction, whereas it decreased in the negative direction, and leakage current density increased more in the negative direction than the positive direction. Given the lowest migration energy of Zinc interstitial (Zni, 0.57 eV) and high oxygen ion conductivity in Bi2O3-rich phase, it is speculated that Zni and adsorbed oxygen (Oad) migrate under DC bias, and then change the defect structure and the double Schottky barrier (DSB) at grain boundaries. As a result, the forward-biased barrier height gradually decreases more than the reverse-biased one.


2021 ◽  
Vol 60 (3) ◽  
pp. 031006
Author(s):  
Xia Zhao ◽  
Weidong Shi ◽  
Boyu Zhang ◽  
Men Guo ◽  
Haibin Shen

Sign in / Sign up

Export Citation Format

Share Document