nanostructured sensor
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 206 ◽  
pp. 114392
Author(s):  
Karen Y.P.S. Avelino ◽  
Giselle S. dos Santos ◽  
Isaac A.M. Frías ◽  
Alberto G. Silva-Junior ◽  
Michelly C. Pereira ◽  
...  

2021 ◽  
Vol 21 (9) ◽  
pp. 4779-4785
Author(s):  
Sanju Rani ◽  
Manoj Kumar ◽  
Yogesh Singh ◽  
Monika Tomar ◽  
Anjali Sharma ◽  
...  

Air pollution is a big concern as it causes harm to human health as well as environment. NO2 can cause several respiratory diseases even in low concentration and therefore an efficient sensor for detecting NO2 at room temperature has become one of the priorities of the scientific community. Although two dimensional (2D) materials (MoS2 etc.) have shown potential for NO2 sensing at lower temperatures, but these have poor desorption kinetics. However, these limitations posed by slow desorption can be overcome, if a material in the form of a p-n junction can be suitably employed. In this work, ~150 nm thick SnSe2 thin film has been deposited by thermally evaporating in-house made SnSe2 powder. The film has been studied for its morphological, structural and gas sensing applications. The morphology of the film showed that the film consists of interconnected nanostructures. Detailed Raman studies further revealed that SnSe2 film had 31% SnSe. The SnSe-SnSe2 nanostructured sensor showed a response of ~112% towards 5 ppm NO2 at room temperature (30 °C). The response and recovery times were ~15 seconds and 10 seconds, respectively. Limit of detection for NO2 was in sub-parts per million (sub-ppm) range. The device demonstrated a better response towards NO2 compared to NH3, CH4, and H2. The mechanism of room temperature fast response, recovery and selective detection of NO2 independent of humidity conditions has been discussed based on physisorption, charge transfer, and formation of SnSe-SnSe2 (p-n) nano-junctions. Depositing a nanostructured film consisting of nano-junctions using an industrially viable thermal evaporation technique for sensing a very low concentration of NO2 is the novelty of this work.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 97
Author(s):  
Rania Oueslati ◽  
Yu Jiang ◽  
Jiangang Chen ◽  
Jayne Wu

Biosensors have shown great potential in realizing rapid, low cost, and portable on-site detection for diseases. This work reports the development of a new bioelectronic sensor called AC electrokinetics-based capacitive (ABC) biosensor, for the detection of genomic DNA (gDNA) of methicillin-resistant Staphylococcus aureus (MRSA). The ABC sensor is based on interdigitated microelectrodes biofunctionalized with oligonucleotide probes. It uses a special AC signal for direct capacitive monitoring of topological change on nanostructured sensor surface, which simultaneously induces dielectrophoretic enrichment of target gDNAs. As a result, rapid and specific detection of gDNA/probe hybridization can be realized with high sensitivity. It requires no signal amplification such as labeling, hybridization chain reaction, or nucleic acid sequence-based amplification. This method involves only simple sample preparation. After optimization of nanostructured sensor surface and signal processing, the ABC sensor demonstrated fast turnaround of results (~10 s detection), excellent sensitivity (a detection limit of 4.7 DNA copies/µL MRSA gDNA), and high specificity, suitable for point of care diagnosis. As a bioelectronic sensor, the developed ABC sensors can be easily adapted for detections of other infectious agents.


Author(s):  
Rania Oueslati ◽  
Yu Jiang ◽  
Jiangang Chen ◽  
Jie Jayne Wu

Biosensors have shown great potential in realizing rapid, low cost and portable on-site detection for diseases. This work reports the development of a new bioelectronic sensor called AC electrokinetics-based capacitive (ABC) biosensor, for the detection of genomic DNA (gDNA) of methicillin-resistant Staphylococcus aureus (MRSA). The ABC sensor is based on interdigitated microelectrodes biofunctionalized with oligonucleotide probes. It uses a special AC signal for direct capacitive monitoring of topological change on nanostructured sensor surface, which simultaneously induce dieletrophoretic enrichment of target gDNAs. As a result, rapid and specific detection of gDNA/probe hybridization can be realized with high sensitivity. It requires no signal amplification such as labelling, hybridization chain reaction, or nucleic acid sequence-based amplification. This method involves only simple sample preparation. After optimization of nano-structured sensor surface and signal processing, the ABC sensor demonstrated fast turnaround of results (~10 s detection), excellent sensitivity (a detection limit of 4.7 DNA copies /µL MRSA gDNA) and high specificity, suitable for point of care diagnosis. As a bioelectronic sensor, the developed ABC sensors can be easily adapted for detection of other infectious agents.


2021 ◽  
Vol 127 ◽  
pp. 114538
Author(s):  
Avshish Kumar ◽  
Hrishikesh Dhasmana ◽  
Amit Kumar ◽  
Vivek Kumar ◽  
Abhishek Verma ◽  
...  

2020 ◽  
Author(s):  
Bernardo Patella ◽  
Roberta Russo ◽  
Alan O'Riordan ◽  
Giuseppe Aiello ◽  
Carmelo Sunseri ◽  
...  

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In particular, in this work we have developed a nanostructured sensor based on array of copper nanowires obtained with the simple method of galvanic deposition. The nanostructured sensors have a very short response time with a detection limit less than 10 M. Different interfering species were tested finding a negligible effect except for the chlorine ions. However, this problem has been solved by removing chlorine ions from the water through a simple precipitation of chloride compounds with low solubility. Nanostructured sensors were also used to analyze real water samples (rain, river and drinking water). In the case of drinking water, we have measured a concentration of nitrate ions very close to the that measured by conventional laboratory techniques.


2020 ◽  
Author(s):  
Bernardo Patella ◽  
Roberta Russo ◽  
Alan O'Riordan ◽  
Giuseppe Aiello ◽  
Carmelo Sunseri ◽  
...  

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In particular, in this work we have developed a nanostructured sensor based on array of copper nanowires obtained with the simple method of galvanic deposition. The nanostructured sensors have a very short response time with a detection limit less than 10 M. Different interfering species were tested finding a negligible effect except for the chlorine ions. However, this problem has been solved by removing chlorine ions from the water through a simple precipitation of chloride compounds with low solubility. Nanostructured sensors were also used to analyze real water samples (rain, river and drinking water). In the case of drinking water, we have measured a concentration of nitrate ions very close to the that measured by conventional laboratory techniques.


Sign in / Sign up

Export Citation Format

Share Document