scholarly journals Hollow-Core Fiber-Tip Interferometric High-Temperature Sensor Operating at 1100 °C with High Linearity

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 234
Author(s):  
Zhe Zhang ◽  
Baijie Xu ◽  
Min Zhou ◽  
Weijia Bao ◽  
Xizhen Xu ◽  
...  

Over decades, fiber-optic temperature sensors based on conventional single-mode fibers (SMF) have been demonstrated with either high linearity and stability in a limited temperature region or poor linearity and thermal hysteresis in a high-temperature measurement range. For high-temperature measurements, isothermal annealing is typically necessary for the fiber-optic sensors, aiming at releasing the residual stress, eliminating the thermal hysteresis and, thus, improving the high-temperature measurement linearity and stability. In this article, an annealing-free fiber-optic high-temperature (1100 °C) sensor based on a diaphragm-free hollow-core fiber (HCF) Fabry-Perot interferometer (FPI) is proposed and experimentally demonstrated. The proposed sensor exhibits an excellent thermal stability and linearity (R2 > 0.99 in a 100–1100 °C range) without the need for high-temperature annealing. The proposed sensor is extremely simple in preparation, and the annealing-free property can reduce the cost of sensor production significantly, which is promising in mass production and industry applications.

Author(s):  
Hiroaki Aizawa ◽  
Tooru Katsumata ◽  
Shuji Komuro ◽  
Takitaro Morikawa ◽  
Hiroaki Ishizawa ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 318
Author(s):  
Chi Li ◽  
Meng Zhu ◽  
Peng Ji ◽  
Cong Xiong ◽  
Changrui Liao

A fiber optic whispering gallery mode (WGM) resonator was proposed and realized by integrating an inline polymer waveguide with a microsphere mounted on it. The polymer waveguide with a diameter of 1 μm was printed with femtosecond laser-assisted multiphoton polymerization in a section of a grooved hollow-core fiber, which was sandwiched between two single-mode fibers. Two WGW resonators assembled with microspheres of different sizes were prepared. The transmission spectra of those stimulated WGMs were investigated both in simulation and experimentally. The temperature response of the resonators was particularly studied, and a linear sensitivity of −593 pm/°C was achieved from 20 °C to 100 °C.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3763 ◽  
Author(s):  
Luis A. Herrera-Piad ◽  
Iván Hernández-Romano ◽  
Daniel A. May-Arrioja ◽  
Vladimir P. Minkovich ◽  
Miguel Torres-Cisneros

In this paper, we propose and experimentally demonstrate a simple technique to enhance the curvature sensitivity of a bending fiber optic sensor based on anti-resonant reflecting optical waveguide (ARROW) guidance. The sensing structure is assembled by splicing a segment of capillary hollow-core fiber (CHCF) between two single-mode fibers (SMF), and the device is set on a steel sheet for measuring different curvatures. Without any surface treatment, the ARROW sensor exhibits a curvature sensitivity of 1.6 dB/m−1 in a curvature range from 0 to 2.14 m−1. By carefully coating half of the CHCF length with polydimethylsiloxane (PDMS), the curvature sensitivity of the ARROW sensor is enhanced to −5.62 dB/m−1, as well as an increment in the curvature range (from 0 to 2.68 m−1). Moreover, the covered device exhibits a low-temperature sensitivity (0.038 dB/°C), meaning that temperature fluctuations do not compromise the bending fiber optic sensor operation. The ARROW sensor fabricated with this technique has high sensitivity and a wide range for curvature measurements, with the advantage that the technique is cost-effective and easy to implement. All these features make this technique appealing for real sensing applications, such as structural health monitoring.


2013 ◽  
Vol 300 ◽  
pp. 194-198 ◽  
Author(s):  
Yun Liu ◽  
Wei Peng ◽  
Yuzhang Liang ◽  
Xinpu Zhang ◽  
Xinlei Zhou ◽  
...  

2013 ◽  
Vol 860-863 ◽  
pp. 1388-1393
Author(s):  
Guo Chang Zhao ◽  
Xian Yi Tong ◽  
Li Ping Song ◽  
Chun Lei Zhao ◽  
Guang Chao Li ◽  
...  

Accurate temperature measurement needs in both research and industry have become more demanding and traditional temperature measurement technologies are struggling to keep up. Optical fiber thermometers have many unique advantages and are an option with much potential in the area of high temperature measurement. Research shows that fiber optic temperature sensors are capable of making accurate and precise measurements in a wide range of harsh conditions where other measurement technologies cannot and are a cost effective option in situations where traditional measurement technologies are currently used. Several typical high temperature fiber optic sensors are discussed in detail, focusing on the principle of operation, advantageous characteristics, and recent research developments, with the aim of aiding in further work with fiber optic thermometers.


Author(s):  
Chung-Yen Chao ◽  
Daniel Robinson ◽  
Victor Grubsky ◽  
Robert Li ◽  
Sonny Hoang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document