scholarly journals Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 608
Author(s):  
Zhenyu Xu ◽  
Yongsen Zhou ◽  
Baoping Zhang ◽  
Chao Zhang ◽  
Jianfeng Wang ◽  
...  

Millions of years’ evolution has imparted life on earth with excellent environment adaptability. Of particular interest to scientists are some plants capable of macroscopically and reversibly altering their morphological and mechanical properties in response to external stimuli from the surrounding environment. These intriguing natural phenomena and underlying actuation mechanisms have provided important design guidance and principles for man-made soft robotic systems. Constructing bio-inspired soft robotic systems with effective actuation requires the efficient supply of mechanical energy generated from external inputs, such as temperature, light, and electricity. By combining bio-inspired designs with stimuli-responsive materials, various intelligent soft robotic systems that demonstrate promising and exciting results have been developed. As one of the building materials for soft robotics, hydrogels are gaining increasing attention owing to their advantageous properties, such as ultra-tunable modulus, high compliance, varying stimuli-responsiveness, good biocompatibility, and high transparency. In this review article, we summarize the recent progress on plant-inspired soft robotics assembled by stimuli-responsive hydrogels with a particular focus on their actuation mechanisms, fabrication, and application. Meanwhile, some critical challenges and problems associated with current hydrogel-based soft robotics are briefly introduced, and possible solutions are proposed. We expect that this review would provide elementary tutorial guidelines to audiences who are interested in the study on nature-inspired soft robotics, especially hydrogel-based intelligent soft robotic systems.

Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


2019 ◽  
Vol 25 (4) ◽  
pp. 447-461 ◽  
Author(s):  
Aishah Rosli ◽  
Siew Chun Low

In recent years, stimuli-responsive materials have garnered interest due to their ability to change properties when exposed to external stimuli, making it useful for various applications including gas separation. Light is a very attractive trigger for responsive materials due to its speedy and non-invasive nature as well as the potential to reduce energy costs significantly. Even though light is deemed as an appealing stimulus for the development of stimuli-responsive materials, this avenue has yet to be extensively researched, as evidenced by the fewer works done on the photo-responsive membranes. Of these, there are even less research done on photo-responsive materials for the purpose of gas separation, thus, we have collected the examples that answer both these criteria in this review. This review covers the utilisation of photo-responsive materials specifically for gas separation purposes. Photo-chromic units, their integration into gas separation systems, mechanism and research that have been done on the topic so far are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Wu Li ◽  
Dongpeng Yan ◽  
Rui Gao ◽  
Jun Lu ◽  
Min Wei ◽  
...  

The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs) have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite) for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity) and chemical factors (such as pH and metal ion); recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36623-36641 ◽  
Author(s):  
Fei Guo ◽  
Zhiguang Guo

Recent progress in smart surfaces with responsive wettability upon external stimuli is reviewed and some of the barriers and potentially promising breakthroughs in this field are also briefly discussed.


Soft Matter ◽  
2016 ◽  
Vol 12 (15) ◽  
pp. 3582-3588 ◽  
Author(s):  
V. Nistor ◽  
J. Cannell ◽  
J. Gregory ◽  
L. Yeghiazarian

The emerging field of soft robotics relies on soft, stimuli-responsive materials to enable load transport, manipulation, and mobility in complex unconstrained environments.


2014 ◽  
Vol 34 (4) ◽  
pp. 310-314 ◽  
Author(s):  
Eujin Pei

Purpose – The purpose of this article is to reviews state-of-the-art developments in four-dimensional (4D) printing, discuss what it is, investigate new applications that have been discovered and suggest its future impact. Design/methodology/approach – The article clarifies the definition of 4D printing and describes notable examples covering material science, equipment and applications. Findings – This article highlights an emerging technology cycle where 4D printing research has gained traction within additive manufacturing. The use of stimuli-responsive materials can be programmed and printed to enable pre-determined reactions when subject to external stimuli. Originality/value – This article reviews state-of-the-art developments in 4D printing, discusses what it is, investigates new applications that have been discovered and suggests its future impact.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3065 ◽  
Author(s):  
Kim ◽  
Park ◽  
Won ◽  
Jeon ◽  
Wie

In recent years, jointless soft robots have demonstrated various curvilinear motions unlike conventional robotic systems requiring complex mechanical joints and electrical design principles. The materials employed to construct soft robots are mainly programmable anisotropic polymeric materials to achieve contactless manipulation of miniaturized and lightweight soft robots through their anisotropic strain responsivity to external stimuli. Although reviews on soft actuators are extensive, those on untethered soft robots are scant. In this study, we focus on the recent progress in the manipulation of untethered soft robots upon receiving external stimuli such as magnetic fields, light, humidity, and organic solvents. For each external stimulus, we provide an overview of the working principles along with the characteristics of programmable anisotropic materials and polymeric composites used in soft robotic systems. In addition, potential applications for untethered soft robots are discussed based on the physicochemical properties of programmable anisotropic materials for the given external stimuli.


2021 ◽  
Author(s):  
Chang Liu ◽  
Le Zhou ◽  
Shuai Cao ◽  
Huacheng Zhang ◽  
Jie Han ◽  
...  

The recent progresses in the preparation of terpyridine-containing pillararene, as well as the utilization of such building blocks for fabricating external stimuli-responsive supramolecular systems were summarized in this review. Different...


2014 ◽  
Vol 1622 ◽  
pp. 129-133
Author(s):  
Esha Das ◽  
Kazuaki Matsumura

ABSTRACTStimuli-responsive materials are capable of reversibly altering their properties depending on the environmental conditions or external stimuli. External stimuli typically include thermal, pH, electric fields, optical, magnetic fields, mechanical forces and chemical interactions. There are many instances in nature where responsive surfaces have been observed. Temperature is the most widely used stimulus in environmentally responsive polymer systems. The change of temperature is not only relatively easy to control, but also easily applicable both in vitro and in vivo. Temperature responsive polymers exhibit a phase transition at a certain temperature, which causes a sudden change in the solvation state. Polymers that become insoluble upon heating have a so-called lower critical solution temperature (LCST). One example of these polymers is poly (N-isopropyl acrylamide), which shows LCST at about 32 °C, close to the physiological temperature. In this study, we report the developing of novel polyampholytes which shows thermo-, salt-responsive liquid-liquid phase separation in aqueous solution.


2014 ◽  
Vol 9 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Xi Chen ◽  
L. Mahadevan ◽  
Adam Driks ◽  
Ozgur Sahin

Sign in / Sign up

Export Citation Format

Share Document