scholarly journals Low Intensity Pulsed Ultrasound for Bone Tissue Engineering

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1488
Author(s):  
Colleen McCarthy ◽  
Gulden Camci-Unal

As explained by Wolff’s law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.

2021 ◽  
Vol 30 ◽  
pp. 096368972098614
Author(s):  
Peng Xia ◽  
Xinwei Wang ◽  
Qi Wang ◽  
Xiaoju Wang ◽  
Qiang Lin ◽  
...  

Mesenchymal stem cell (MSC) migration is promoted by low-intensity pulsed ultrasound (LIPUS), but its mechanism is unclear. Since autophagy is known to regulate cell migration, our study aimed to investigate if LIPUS promotes the migration of MSCs via autophagy regulation. We also aimed to investigate the effects of intra-articular injection of MSCs following LIPUS stimulation on osteoarthritis (OA) cartilage. For the in vitro study, rat bone marrow-derived MSCs were treated with an autophagy inhibitor or agonist, and then they were stimulated by LIPUS. Migration of MSCs was detected by transwell migration assays, and stromal cell-derived factor-1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR4) protein levels were quantified. For the in vivo study, a rat knee OA model was generated and treated with LIPUS after an intra-articular injection of MSCs with autophagy inhibitor added. The cartilage repair was assessed by histopathological analysis and extracellular matrix protein expression. The in vitro results suggest that LIPUS increased the expression of SDF-1 and CXCR4, and it promoted MSC migration. These effects were inhibited and enhanced by autophagy inhibitor and agonist, respectively. The in vivo results demonstrate that LIPUS significantly enhanced the cartilage repair effects of MSCs on OA, but these effects were blocked by autophagy inhibitor. Our results suggest that the migration of MSCs was enhanced by LIPUS through the activation autophagy, and LIPUS improved the protective effect of MSCs on OA cartilage via autophagy regulation.


2009 ◽  
Vol 17 ◽  
pp. S102-S103
Author(s):  
K. Uenaka ◽  
S. Imai ◽  
S. Shioji ◽  
K. Kumagai ◽  
N. Okumura ◽  
...  

2010 ◽  
Vol 36 (5) ◽  
pp. 743-751 ◽  
Author(s):  
Yi-Sheng Chan ◽  
Kuo-Yao Hsu ◽  
Chia-Hua Kuo ◽  
Shin-Da Lee ◽  
Su-Ching Chen ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hadi Samadian ◽  
Hamid Mobasheri ◽  
Mahmoud Azami ◽  
Reza Faridi-Majidi

Abstract In this study, we aimed to fabricate osteoconductive electrospun carbon nanofibers (CNFs) decorated with hydroxyapatite (HA) crystal to be used as the bone tissue engineering scaffold in the animal model. CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers via heat treatment and the carbonized nanofibers were mineralized by a biomimetic approach. The growth of HA crystals was confirmed using XRD, FTIR, and EDAX analysis techniques. The mineralization process turned the hydrophobic CNFs (WCA: 133.5° ± 0.6°) to hydrophilic CNFs/HA nanocomposite (WCA 15.3° ± 1°). The in vitro assessments revealed that the fabricated 24M-CNFs nanocomposite was biocompatible. The osteoconductive characteristics of CNFs/HA nanocomposite promoted in vivo bone formation in the rat’s femur defect site, significantly, observed by computed tomography (CT) scan images and histological evaluation. Moreover, the histomorphometric analysis showed the highest new bone formation (61.3 ± 4.2%) in the M-CNFs treated group, which was significantly higher than the negative control group (the defect without treatment) (< 0.05). To sum up, the results implied that the fabricated CNFs/HA nanocomposite could be considered as the promising bone healing material.


2021 ◽  
Author(s):  
Sirong Song ◽  
Dongbin Ma ◽  
Lixia Xu ◽  
Qiong Wang ◽  
Lanxiang Liu ◽  
...  

Abstract Background: Cancer stem cells, quiescent and drug-resistant, have become a therapeutic target. Low-intensity pulsed ultrasound (LIPUS), a new noninvasive physical device, promotes pluripotent stem cell differentiation and is mainly applied in tissue engineering but rarely in oncotherapy. We explored the effect and mechanism of LIPUS on glioma stem cell (GSC) expulsion from quiescence.Methods: Immunofluorescence staining and flow cytometry were used to detect changes of stem hallmarkers. RT-PCR results showed the gene expression levels of stem-related transcription factors. Brud and RNA-seq were performed for cell cycle analysis. Western blotting showed different expressions of key point proteins. Telomeres damage was found by FISH and IF-FISH. Fluorescence detection was used for mitochondrial membrane potential assay and singlet oxygen detection. Tumor xenograft and immunohistochemical staining were performed to confirm the role of low intensity pulsed ultrasound.Results: We found that LIPUS led to attenuated expression of GSC hallmarks, promoted GSC escape from G0 quiescence, and significantly weakened the stemness-related Wnt and Hh pathways. Next, Interestingly, LIPUS transferred sonomechanical energy into recombinant cytochrome C and B5 proteins in vitro, which converted oxygen molecules into singlet oxygen, triggering a telomere crisis. The results in vivo and in vitro confirmed that LIPUS enhanced GSC sensitivity to temozolomide.Conclusion: These results demonstrated that LIPUS “wakes up” GSCs to improve chemotherapy by transferring energy to cyt families and leading to telomere crisis.


2022 ◽  
Author(s):  
Ling Long ◽  
Ling Zhou ◽  
Jing Zhu ◽  
Xuan He

Abstract Objective: Adenomyosis (AM) is an important cause of female infertility, and its disease mechanism remains unclear. This study preliminarily investigated the expression of endometrial receptivity markers homeobox A10 (HOXA10) and leukemia inhibitory factor (LIF) in infertile patients with AM and described the effects of low intensity pulsed ultrasound (LIPUS) on it. Methods: In vivo, tissues were obtained from the infertile female AM patient group (AG group, n=10) and healthy control group (CG group, n=11). The expression of HOXA10 and LIF in the two groups was detected by immunohistochemistry (IHC) and western blotting. In vitro, primary cells were extracted and cultured from the two groups, and the expression of HOXA10 and LIF protein was detected by western blotting. Then the AG cells were treated with 15, 30, and 60 mW/cm2 of LIPUS for 7 days (20 min/day), and detected the cell adhesion rate. Finally, treat the AG cells with 30mW/cm2 LIPUS for 7 days (20 min/day), and detect the expression level of ICAM-1 in the cell supernatant by ELISA. The AG cells was treated with 30 mW/cm2 LIPUS for 4 days (20 min/day), and the expression levels of HOXA10 and LIF were detected by western blotting, RT-PCR, and agarose gel electrophoresis. Results: In vivo, IHC staining showed that HOXA10 and LIF proteins were mainly localized in endometrial epithelial cells. Both IHC and western blot showed that the levels of HOXA10 and LIF in the AG group were significantly lower than those in the CG group (P<0.01, P<0.05). In vitro, the expression levels of HOXA10 and LIF protein in the AG cell was significantly lower than those in the CG cell (P<0.001). Then, the cell adhesion ability of the 30 and 60 mW/cm2 groups was higher than that of the 15 mW/cm2 group after LIPUS treatment. Finally, The concentration of ICAM-1 in the supernatant of AG cells treated with LIPUS was significantly higher than that of the control group (P<0.01), and the AG cells were treated with 30 mW/cm2 LIPUS for 4 days (20 min/day), the protein and mRNA expression levels of HOXA10 and LIF were higher than those of the control group (P<0.001). Conclusion: The reduction of HOXA10 and LIF may be one of the reasons for the decreased endometrial receptivity in AM. The LIPUS promoted the adhesion and the expression of HOXA10 and LIF of EEECs from the AM group, thereby increasing endometrial receptivity.


Sign in / Sign up

Export Citation Format

Share Document