scholarly journals Single-Wedge Lift-Out for Atom Probe Tomography Al/Ni Multilayers Specimen Preparation Based on Dual-Beam-FIB

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Yi Qiao ◽  
Yalong Zhao ◽  
Zheng Zhang ◽  
Binbin Liu ◽  
Fusheng Li ◽  
...  

Atomic probe tomography (APT) samples with Al/Ni multilayer structure were successfully prepared by using a focused ion beam (FIB), combining with a field emission scanning electron microscope, with a new single-wedge lift-out method and a reduced amorphous damage layer of Ga ions implantation. The optimum vertex angle and preparation parameters of APT sample were discussed. The double interdiffusion relationship of the multilayer films was successfully observed by the local electrode APT, which laid a foundation for further study of the interface composition and crystal structure of the two-phase composites.

2000 ◽  
Vol 6 (S2) ◽  
pp. 516-517
Author(s):  
Youren Xu ◽  
Chris Schwappach ◽  
Ron Cervantes

Focused ion beam lift-out technique has become increasingly attractive to the TEM community due to its unique advantage of no mechanical grinding/polishing involved in the process [1-3]. The technique essentially consists of two parts: preparation of membrane using focused ion beam (FIB) and transfer of the membrane (lift-out) to a grid. Up to date, this technique has only been demonstrated on single beam FIB systems. From a practical standpoint, overall sample quality (thickness) and lack of end-point precision are two major issues associated with the conventional single beam FIB technique. These issues are primarily related to ion beam damage and endpoint control encountered during the final stages of specimen thinning. As a result, the widespread use of FIB lift-out technique for high precision TEM specimen preparation has been limited. Recent technological advances have made it possible to combine both an electron beam column and an ion beam column into an integrated dual beam-focused ion beam (DB-FIB) system.


2015 ◽  
Vol 21 (3) ◽  
pp. 544-556 ◽  
Author(s):  
Fengzai Tang ◽  
Michael P. Moody ◽  
Tomas L. Martin ◽  
Paul A.J. Bagot ◽  
Menno J. Kappers ◽  
...  

AbstractVarious practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard “clean-up” voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure.


2018 ◽  
Vol 188 ◽  
pp. 19-23 ◽  
Author(s):  
J. Bogdanowicz ◽  
A. Kumar ◽  
C. Fleischmann ◽  
M. Gilbert ◽  
J. Houard ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 150-151
Author(s):  
D. J. Larson ◽  
A. K. Petford-Long ◽  
A. Cerezo ◽  
T. C. Anthony ◽  
M. K. Miller

Multilayer film (MLF) structures which exhibit giant-magnetoresistance (GMR) properties have applications in the areas of magnetic recording and computer memory. The magnetic properties of MLF structures are dependent upon structural and compositional variations at the atomic level. Thus, structural characterization with high spatial resolution, especially at layer interfaces, is important in order to optimize device performance with respect to processing and operating conditions. Atom probe field ion microscopy (APFIM) is one technique that has the capability to characterize the local structure and composition of MLF devices with sufficiently high resolution. However, a major difficulty has been successful specimen preparation from MLF materials, which requires fabrication of a sharply pointed needle (radius <50 nm) containing the layers of interest in the apex region. Research on specialized field ion specimen preparation techniques which use focused ion beam milling has recently enabled nanoscale MLF structures to be investigated. In the present paper, the application of atom probe microanalysis to two different MLF structures is presented.


2007 ◽  
Vol 13 (5) ◽  
pp. 347-353 ◽  
Author(s):  
Pyuck-Pa Choi ◽  
Tala'at Al-Kassab ◽  
Young-Soon Kwon ◽  
Ji-Soon Kim ◽  
Reiner Kirchheim

Focused ion-beam milling has been applied to prepare needle-shaped atom probe tomography specimens from mechanically alloyed powders without the use of embedding media. The lift-out technique known from transmission electron microscopy specimen preparation was modified to cut micron-sized square cross-sectional blanks out of single powder particles. A sequence of rectangular cuts and annular milling showed the highest efficiency for sharpening the blanks to tips. First atom probe results on a Fe95Cu5 powder mechanically alloyed in a high-energy planetary ball mill for 20 h have been obtained. Concentration profiles taken from this powder sample showed that the Cu distribution is inhomogeneous on a nanoscale and that the mechanical alloying process has not been completed yet. In addition, small clusters of oxygen, stemming from the ball milling process, have been detected. Annular milling with 30 keV Ga ions and beam currents ≥50 pA was found to cause the formation of an amorphous surface layer, whereas no structural changes could be observed for beam currents ≤10 pA.


2011 ◽  
Vol 17 (3) ◽  
pp. 292-295 ◽  
Author(s):  
T. Yamamoto ◽  
Y. Hanaoka ◽  
N. Mayama ◽  
T. Kaito ◽  
T. Adachi ◽  
...  

2012 ◽  
Vol 531-532 ◽  
pp. 592-595
Author(s):  
Yi Qing Chen ◽  
Feng Zai Tang ◽  
Liang Chi Zhang

This paper reports the specimen preparation using an advanced dual beam focused ion beam (FIB) technique for bulk polycrystalline diamond (PCD) composites after dynamic friction polishing (DFP). The technique adapted allows for precisely processing diamond materials at the specific polishing track sites of PCD surface, from which large cross-sectional specimens for SEM/EDS/Raman microanalysis could be successfully created. In addition, an in-situ lift-out method was developed to prepare the site-specific HRTEM specimens which were thin enough for imaging the atomic lattice of diamond and for conducting EELS analysis.


Sign in / Sign up

Export Citation Format

Share Document