damage layer
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Yi Qiao ◽  
Yalong Zhao ◽  
Zheng Zhang ◽  
Binbin Liu ◽  
Fusheng Li ◽  
...  

Atomic probe tomography (APT) samples with Al/Ni multilayer structure were successfully prepared by using a focused ion beam (FIB), combining with a field emission scanning electron microscope, with a new single-wedge lift-out method and a reduced amorphous damage layer of Ga ions implantation. The optimum vertex angle and preparation parameters of APT sample were discussed. The double interdiffusion relationship of the multilayer films was successfully observed by the local electrode APT, which laid a foundation for further study of the interface composition and crystal structure of the two-phase composites.



2021 ◽  
Author(s):  
Euiseok Kim ◽  
Jaeyun Lee ◽  
Jihyun Lee

Abstract This paper demonstrates how to localize metal-to-metal short failures in DRAM, where defects can occur over a large area including the aluminum layer, by using the means of mechanical grinding, plasma FIB delayering, and EBIRCH (Electron Beam Induced Resistance Change). Our experiments show that a uniform mechanical grinding of an aluminum layer, and DX PFIB delayering, results in a high quality planer surface in the target layer and site, as the slope created during the grinding is compensated by PFIB delayering. This approach has advantages that are conducive to EBIRCH analysis. First, the target layer can be prepared at any given location (site-free). Second, the defective layer can be delayered to a desired depth without damage (layer-free). Last, after delayering, the surface of the device becomes evenly flat enough to allow the electron beam to evenly penetrate the device for EBIRCH analysis (higher-flatness).With the use of more advanced device preparation methods, EBIRCH analysis has a higher chance of successfully localizing metal line/via shorts even in a large region, which includes the aluminum layer.



Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 211
Author(s):  
Xuefen Tian ◽  
Xiang Liu ◽  
Min Gong ◽  
Weidi He ◽  
Xinge Fu ◽  
...  

One of the key problems for the application of nuclear fusion energy is to select the suitable plasma facing materials (PFMs). Among the W-based materials, CVD-W exhibits some unique advantages. In order to estimate the performance of CVD-W under the fusion environment, the vacancy-type defects and their evolution are investigated by the Doppler-broadening slow positron beam analysis (DB-SPBA) combined with SEM (scanning electron microscope). There are two kinds of neutral beam irradiation, the pure H neutral beam and the H + 6 at.% He neutral beam irradiation, which are performed at the neutral beam facility GLADIS (IPP, Germany). The surface temperatures of CVD-W irradiated by H (H + 6 at.% He) are 850 and 1000 (700 and 800 °C). By comparing the samples under different conditions, the defect evolution of CVD-W is obtained. As for the pure H neutral beam irradiated samples, the DB-SPBA results demonstrate that the CVD-W sample at the surface temperature of 1000 °C, compared to the 850 °C sample, shows a decrease in S parameters, which is due to the reduction of vacancy-type defect concentration. The defect damage layer in 1000 °C sample is narrower than that of 850 °C sample and the defect type tends to be consistent in 1000 °C sample. The SEM results suggest that the surface damage of the 1000 °C sample was recovered to some extent. As for the H + 6 at.% He neutral beam irradiated samples, compared with the CVD-W sample at the surface temperature of 700 °C, the 800 °C sample shows an increased S parameters, which can be attributed to the volume increase of vacancy-type defect. The defect damage layer in the 800 °C sample is wider than that of the 700 °C sample. Both the H + 6 at.% He irradiated samples show complex defect types. The surface of the 800 °C sample exhibits more dense pinhole damage structures compared to that of the 700 °C sample.



2021 ◽  
Vol 67 ◽  
pp. 293-300
Author(s):  
Huadong Wang ◽  
Yi Ma ◽  
Guangjian Peng ◽  
Wei Hang ◽  
Weifeng Jiang ◽  
...  


2020 ◽  
Vol 128 (23) ◽  
pp. 235304
Author(s):  
Huihui Li ◽  
Changcai Cui ◽  
Subiao Bian ◽  
Jing Lu ◽  
Xipeng Xu ◽  
...  


2020 ◽  
Vol 3 (2) ◽  
pp. 93-98
Author(s):  
Xichun Luo ◽  
Zhipeng Li ◽  
Wenlong Chang ◽  
Yukui Cai ◽  
Jining Sun ◽  
...  

The article presents the development of a novel laser-assisted grinding (LAG) process to reduce surface roughness and subsurface damage in grinding reaction-bonded silicon carbide (RB-SiC). A thermal control approach is proposed to facilitate the process development, in which a two-temperature model (TTM) is applied to control the required laser power to thermal softening of RB-SiC prior to the grinding operation without melting the workpiece or leaving undesirable microstructural alteration. Fourier’s law is adopted to obtain the thermal gradient for verification. An experimental comparison of conventional grinding and LAG shows significant reduction of machined surface roughness (37%–40%) and depth of subsurface damage layer (22%–50.6%) using the thermal control approach under the same grinding conditions. It also shows high specific grinding energy 1.5 times that in conventional grinding at the same depth of cut, which accounts for the reduction of subsurface damage as it provides enough energy to promote ductile-regime material removal.



2020 ◽  
Vol 20 (11) ◽  
pp. 6622-6626
Author(s):  
Junhwa Song ◽  
Jinhyuk Yoo ◽  
Youngseung Cho ◽  
Jihun Kim ◽  
Jeonghoon Oh ◽  
...  

In order to reduce contact resistance (Rc) of the source/drain region in nanoscale devices, it is essential to overcome the increasing leakage and hot-electron-induced punch through (HEIP) degradation. In this paper, we propose a simple in situ Si soft treatment technique immediately after direct contact (DC) etching to reduce Rc and minimize HEIP degradation. We found by analysis with a transmission electron microscope, that 10 s of treatment reduced the plasma damaged layer by 19%, which resulted in 10.5% reduction of the P+ contact resistance. For comparison, the P + Rc was reduced by 6.5% when the doping level of the plug implantation was increased by 25%, but the HEIP breakdown voltage (VHEIP) by AC stress was greatly reduced by more than 80 mV, increasing the standby leakage current of DRAM devices. In the case of removing the plasma damage layer, not only did VHIEP not decrease until after 10 s, but also the reduction in Rc was larger than with the plug enhancement. The effect of the plasma damaged layer on HEIP was verified through the plug effect and gate induced drain leakage measurement, based on the distance between the gate and DC for each process. This simple in situ technique not only removed byproducts and the plasma damaged amorphous layer, but it also affected the effective implantation of dopants in subsequent plug processes. It was also cost effective because the process time was short and no extra process steps were added.



2020 ◽  
Vol 866 ◽  
pp. 143-151
Author(s):  
Jian Bin Wang ◽  
Yong Qiang Tong ◽  
Ben Chi Jiang ◽  
Da Shu ◽  
Gang Wang

The depth of surface/subsurface damage layer is the key index of surface quality of sapphire. In this paper, that depth model of the surface/subsurface damage lay characterized by the crack length was established according to the mechanical theory of indentation fracture. The cutting relation between abrasive and workpiece and the difference of the depth of subsurface damage crack are analyzed. It is preliminarily estimated that the length of sub-surface damage crack of free abrasive sapphire is about 2.46 times that of fixed abrasive when considering only the contact hardness of abrasive grain under static load. Diamond abrasives with size of W20 were adopted to carry out experiments in free and fixed lapping methods. The results show that the surface/subsurface damage depth is 9.87μm and 3.63μm respectively. It is easier to obtain good sub-surface quality by using the fixed abrasive method than free abrasive at the same particle size.



Author(s):  
Jiao Lian ◽  
Yuechong Feng ◽  
Sanzhao Wang ◽  
Puguang Song ◽  
Yu Shi ◽  
...  


2020 ◽  
Vol 12 (2) ◽  
pp. 168781401989516 ◽  
Author(s):  
Jiaxuan Chen ◽  
Mayan Li ◽  
Fang Wang ◽  
Lihua Lu ◽  
Jianbo Qin ◽  
...  

The nano-metric cutting process of single-crystal SiO2 was studied using molecular dynamics simulation, where the effects of anisotropy on material removal and surface integrity were analyzed. The typical crystal directions on different crystal planes of SiO2 were selected as cutting directions. The results show that the chip formation, temperature distribution in the machined area, cutting force, phase transformation and damage layer thickness vary according to the cutting direction. The crystal orientation of (110) [00−1] exhibits a large range of damage expansion while (110) [1−10] exhibits the smallest range. In addition, the radial distribution function results show that SiO2 workpieces cut in different directions vary in crystal phase type and content to some degree, while a new phase is produced in the cutting direction of (111) [−101]. Therefore, the anisotropy of the selection of crystal planes and crystal directions is of great significance for the nano-metric cutting of SiO2 to obtain quality machined surfaces of SiO2.



Sign in / Sign up

Export Citation Format

Share Document