scholarly journals Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed

Micromachines ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Jens Gottmann ◽  
Martin Hermans ◽  
Nikolai Repiev ◽  
Jürgen Ortmann
Author(s):  
T. O. Lipatieva ◽  
A. S. Lipatiev ◽  
Y. V. Kulakova ◽  
S. V. Lotarev ◽  
S. S. Fedotov ◽  
...  

2018 ◽  
pp. 68-72
Author(s):  
Yu. K. Taranenko ◽  
O. Yu. Oliynyk ◽  
N. A. Minakova ◽  
E. V. Titova

2008 ◽  
Author(s):  
Wei Guo ◽  
Zeng Bo Wang ◽  
Lin Li ◽  
Zhu Liu ◽  
Boris Luk’yanchuk ◽  
...  

Author(s):  
Tino Petsch ◽  
Bernd Keiper ◽  
Günter Reiße ◽  
Steffen Weißmantel ◽  
Robby Ebert ◽  
...  

2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


Friction ◽  
2021 ◽  
Author(s):  
Pengcheng Li ◽  
Chongyang Tang ◽  
Xiangheng Xiao ◽  
Yanmin Jia ◽  
Wanping Chen

AbstractThe friction between nanomaterials and Teflon magnetic stirring rods has recently drawn much attention for its role in dye degradation by magnetic stirring in dark. Presently the friction between TiO2 nanoparticles and magnetic stirring rods in water has been deliberately enhanced and explored. As much as 1.00 g TiO2 nanoparticles were dispersed in 50 mL water in 100 mL quartz glass reactor, which got gas-closed with about 50 mL air and a Teflon magnetic stirring rod in it. The suspension in the reactor was magnetically stirred in dark. Flammable gases of 22.00 ppm CO, 2.45 ppm CH4, and 0.75 ppm H2 were surprisingly observed after 50 h of magnetic stirring. For reference, only 1.78 ppm CO, 2.17 ppm CH4, and 0.33 ppm H2 were obtained after the same time of magnetic stirring without TiO2 nanoparticles. Four magnetic stirring rods were simultaneously employed to further enhance the stirring, and as much as 30.04 ppm CO, 2.61 ppm CH4, and 8.98 ppm H2 were produced after 50 h of magnetic stirring. A mechanism for the catalytic role of TiO2 nanoparticles in producing the flammable gases is established, in which mechanical energy is absorbed through friction by TiO2 nanoparticles and converted into chemical energy for the reduction of CO2 and H2O. This finding clearly demonstrates a great potential for nanostructured semiconductors to utilize mechanical energy through friction for the production of flammable gases.


2021 ◽  
Vol 60 (12) ◽  
pp. 4682-4692
Author(s):  
Mohamed Elmously ◽  
Johannes Neidel ◽  
Andreas Apfelbacher ◽  
Robert Daschner ◽  
Andreas Hornung

Sign in / Sign up

Export Citation Format

Share Document