quartz glass substrate
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3352
Author(s):  
Yutaka Suwazono ◽  
Takuro Murayoshi ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

A single-walled carbon nanotube/anatase (SWCNT/anatase) composite thin film with a transmittance of over 70% in the visible-light region was fabricated on a quartz glass substrate by heat treating a precursor film at 500 °C in air. The precursor film was formed by spin coating a mixed solution of the titania molecular precursor and well-dispersed SWCNTs (0.075 mass%) in ethanol. The anatase crystals and Ti3+ ions in the composite thin films were determined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The effect of the heating process on the SWCNTs was analyzed using Raman spectroscopy. The composite film showed an even surface with a scratch resistance of 4H pencil hardness, as observed using field-emission scanning electron microscopy and atomic force microscopy. The electrical resistivity and optical bandgap energy of the composite thin film with a thickness of 100 nm were 6.6 × 10−2 Ω cm and 3.4 eV, respectively, when the SWCNT content in the composite thin film was 2.9 mass%. An anodic photocurrent density of 4.2 μA cm−2 was observed under ultraviolet light irradiation (16 mW cm−2 at 365 nm) onto the composite thin film, thus showing excellent properties as a photoelectrode without conductive substrates.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151012
Author(s):  
Natangue Heita Shafudah ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

Cubic or tetragonal zirconia thin films of transparent and 100 nm thickness were selectively formed on a quartz glass substrate by heat-treating the molecular precursor films involving Zr(IV) complexes of nitrilotriacetic acid, at 500[Formula: see text]C in air for 1 h. A precursor solution was prepared by a reaction of the ligand and zirconium tetrabutoxide in alcohol under the presence of butylamine. By the addition of H2O2 or H2O into the solution, the spin-coated precursor films were converted to cubic zirconia thin films by the abovementioned procedure. Further, the identical phase was produced also in the case of the electro-sprayed precursor film which was formed by an addition of H2O2 into the solution. On the other hand, the tetragonal zirconia thin film was obtained from a precursor film formed by using a solution dissolving the original Zr(IV) complex of the ligand, without H2O2 nor H2O. The crystal structure of all thin films was determined by using both the X-ray diffraction (XRD) patterns and Raman spectra. Thus, the zirconia thin films of both crystals could be facilely and selectively obtained with no use of hetero-metal ion stabilizers. The XPS spectra of the thin films show that the O/Zr ratio of the cubic phase is 1.37 and slightly larger than tetragonal one (1.29), and also demonstrate that the nitrogen atoms, which may contribute to stabilize these metastable phases at room temperature, of about 5−7 atomic% was remained in the resultant thin films. The adhesion strengths of cubic zirconia thin film onto the quartz glass substrate was 68 MPa and larger than that of tetragonal one, when the precursor films were formed via a spin coating process. The optical and surface properties of the thin films were also examined in relation to the crystal systems.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1050
Author(s):  
Natangue Heita Shafudah ◽  
Hiroki Nagai ◽  
Yutaka Suwazono ◽  
Ryuhei Ozawa ◽  
Yukihiro Kudoh ◽  
...  

Titania precursor films were electrosprayed on a quartz glass substrate, which was pre-modified with an ultra-thin film obtained by spin-coating a single-walled carbon nanotube (SWCNT) dispersed solution. The X-ray diffraction patterns of the thin films obtained by heat-treating the precursor films at 500 °C in air for 1 h indicated that the formed crystals were anatase. A new route to fabricate transparent thin films on the insulating substrate via electrospray deposition (ESD) was thus attained. The photoluminescence spectrum of the thin film showed a peak at 2.23 eV, assignable to the self-trapped exciton of anatase. The Raman spectrum of the thin film demonstrated that heat treatment is useful for removing SWCNTs. The thin film showed a water contact angle of 14 ± 2° even after being kept under dark conditions for 1 h, indicating a high level of hydrophilicity. Additionally, the thin film had a super-hydrophilic surface with a water contact angle of 1 ± 1° after ultraviolet light irradiation with an intensity of 4.5 mW cm−2 at 365 nm for 1 h. The importance of Ti3+ ions in the co-present amorphous phase, which was dominantly formed via the ESD process, for hydrophilicity was also clarified by means of X-ray photoelectron spectroscopy.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 533 ◽  
Author(s):  
Potejana Potejanasak ◽  
Sethavut Duangchan

In this study, we proposed the self-organization process and its localized surface plasmon resonance property (LSPR) to study the effect of chemically treated quartz glass substrates for gold nanoisland array formation. Firstly, we etched a quartz glass substrate using a sputter etching machine. Secondly, n-butanol was treated on the surface of the substrate. Then, we deposited a gold thin film on the substrate with assisted chemical etching. Finally, the self-organization method examined the thermal annealing of gold nanoisland arrays on a substrate. The results showed that the gold nanoisland that was aggregated on an etched quartz glass substrate was large and sparse, while the gold nanoisland aggregated on a chemically treated substrate was small and dense. Further, it was revealed that a substrate’s surface energy reduced chemical treating and increased the gold nanoisland contact angle on the substrate via the thermal annealing process. It was also confirmed that chemical treatment was useful to control the morphology of gold nanoisland arrays on a substrate, particularly when related to tuning their optical property.


2020 ◽  
Vol 13 (03) ◽  
pp. 2051012
Author(s):  
Alina Uusiku ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

A conductive Cu thin film with a thickness of 170[Formula: see text]nm, electrical resistivity of 8.9(2) [Formula: see text][Formula: see text]cm and adhesion strength of 12(7) MPa was fabricated at 180∘C in air. The spray solutions were prepared by electrolyzing Cu electrodes in an aqueous solution of ammonium formate, and then by adding ethylenediamine-N, N, N[Formula: see text], N[Formula: see text]-tetraacetic acid (EDTA). The surface morphology image of resultant Cu thin film, observed by a field emission scanning electron microscope, revealed Cu grains with particle sizes of ca. [Formula: see text][Formula: see text]nm. It was indicated that the Cu complex containing EDTA ligand in the spray solution plays important roles to (1) provide enough amount of carbon atoms as a reducing agent for phase transition of its coordinated Cu[Formula: see text] to crystalline Cu0 and (2) prevent the product from oxidation under atmospheric O2 during spray coating.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 161
Author(s):  
Guangyu Ji ◽  
Dehai Zhang ◽  
Jin Meng ◽  
Siyu Liu ◽  
Changfei Yao

To effectively reduce the requirement of Local Oscillator (LO) power, this paper presents the design and measurement of a biased sub-harmonic mixer working at the center frequency of 0.67 THz in hybrid integration. Two discrete Schottky diodes were placed across the LO waveguide in anti-series configuration on a 50 μm thick quartz-glass substrate, and chip capacitors were not required. At the driven of 3 mW@335 GHz and 0.35 V, the mixer had a minimum measured Signal Side-Band (SSB) conversion loss of 15.3 dB at the frequency of 667 GHz. The typical conversion loss is 18.2 dB in the band of 650 GHz to 690 GHz.


2019 ◽  
Vol 60 ◽  
pp. 458-464 ◽  
Author(s):  
Kaito Wakamatsu ◽  
Syuhei Kurokawa ◽  
Takaaki Toyama ◽  
Terutake Hayashi

Sign in / Sign up

Export Citation Format

Share Document