scholarly journals Metagenomic Insights into the Effects of Seasonal Temperature Variation on the Activities of Activated Sludge

2019 ◽  
Vol 7 (12) ◽  
pp. 713 ◽  
Author(s):  
Chenbing Ai ◽  
Zhang Yan ◽  
Han Zhou ◽  
Shanshan Hou ◽  
Liyuan Chai ◽  
...  

It is well acknowledged that the activities of activated sludge (AS) are influenced by seasonal temperature variation. However, the underlying mechanisms remain largely unknown. Here, the activities of activated sludge under three simulated temperature variation trends were compared in lab-scale. The TN, HN3-H, and COD removal activities of activated sludge were improved as temperature elevated from 20 °C to 35 °C. While, the TN, HN3-H, COD and total phosphorus removal activities of activated sludge were inhibited as temperature declined from 20 °C to 5 °C. Both the extracellular polymer substances (EPS) composition (e.g., total amount, PS, PN and DNA) and sludge index of activated sludge were altered by simulated seasonal temperature variation. The variation of microbial community structures and the functional potentials of activated sludge were further explored by metagenomics. Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes were the dominant phyla for each activated sludge sample under different temperatures. However, the predominant genera of activated sludge were significantly modulated by simulated temperature variation. The functional genes encoding enzymes for nitrogen metabolism in microorganisms were analyzed. The enzyme genes related to ammonification had the highest abundance despite the changing temperature, especially for gene encoding glutamine synthetase. With the temperature raising from 20 °C to 35 °C. The abundance of amoCAB genes encoding ammonia monooxygenase (EC:1.14.99.39) increased by 305.8%. Meanwhile, all the enzyme genes associate with denitrification were reduced. As the temperature declined from 20 °C to 5 °C, the abundance of enzyme genes related to nitrogen metabolism were raised except for carbamate kinase (EC:2.7.2.2), glutamate dehydrogenase (EC:1.4.1.3), glutamine synthetase (EC:6.3.1.2). Metagenomic data indicate that succession of the dominant genera in microbial community structure is, to some extent, beneficial to maintain the functional stability of activated sludge under the temperature variation within a certain temperature range. This study provides novel insights into the effects of seasonal temperature variation on the activities of activated sludge.

Energies ◽  
2013 ◽  
Vol 6 (10) ◽  
pp. 5182-5199 ◽  
Author(s):  
Richard Ciotola ◽  
Jay Martin ◽  
Juan Castańo ◽  
Jiyoung Lee ◽  
Frederick Michel

2016 ◽  
Vol 283 (1835) ◽  
pp. 20160349 ◽  
Author(s):  
Xia Hua

Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data.


Sign in / Sign up

Export Citation Format

Share Document