scholarly journals Genome Sequencing of Pantoea agglomerans C1 Provides Insights into Molecular and Genetic Mechanisms of Plant Growth-Promotion and Tolerance to Heavy Metals

2020 ◽  
Vol 8 (2) ◽  
pp. 153 ◽  
Author(s):  
Francesca Luziatelli ◽  
Anna Grazia Ficca ◽  
Mariateresa Cardarelli ◽  
Francesca Melini ◽  
Andrea Cavalieri ◽  
...  

Distinctive strains of Pantoea are used as soil inoculants for their ability to promote plant growth. Pantoea agglomerans strain C1, previously isolated from the phyllosphere of lettuce, can produce indole-3-acetic acid (IAA), solubilize phosphate, and inhibit plant pathogens, such as Erwinia amylovora. In this paper, the complete genome sequence of strain C1 is reported. In addition, experimental evidence is provided on how the strain tolerates arsenate As (V) up to 100 mM, and on how secreted metabolites like IAA and siderophores act as biostimulants in tomato cuttings. The strain has a circular chromosome and two prophages for a total genome of 4,846,925-bp, with a DNA G+C content of 55.2%. Genes related to plant growth promotion and biocontrol activity, such as those associated with IAA and spermidine synthesis, solubilization of inorganic phosphate, acquisition of ferrous iron, and production of volatile organic compounds, siderophores and GABA, were found in the genome of strain C1. Genome analysis also provided better understanding of the mechanisms underlying strain resistance to multiple toxic heavy metals and transmission of these genes by horizontal gene transfer. Findings suggested that strain C1 exhibits high biotechnological potential as plant growth-promoting bacterium in heavy metal polluted soils.

2021 ◽  
Vol 2 ◽  
Author(s):  
Claudia A. Ramírez-Valdespino ◽  
Erasmo Orrantia-Borunda

Due to their unique properties and functionalities, nanomaterials can be found in different activities as pharmaceutics, cosmetics, medicine, and agriculture, among others. Nowadays, formulations with nano compounds exist to reduce the application of conventional pesticides and fertilizers. Among the most used are nanoparticles (NPs) of copper, zinc, or silver, which are known because of their cytotoxicity, and their accumulation can change the dynamic of microbes present in the soil. In agriculture, Trichoderma is widely utilized as a safe biocontrol strategy and to promote plant yield, making it susceptible to be in contact with nanomaterials that can interfere with its viability as well as its biocontrol and plant growth promotion effects. It is well-known that strains of Trichoderma can tolerate and uptake heavy metals in their bulk form, but it is poorly understood whether the same occurs with nanomaterials. Interestingly, Trichoderma can synthesize NPs that exhibit antimicrobial activities against various organisms of interest, including plant pathogens. In this study, we summarize the main findings regarding Trichoderma and nanotechnology, including its use to synthesize NPs and the consequence that these compounds might have in this fungus and its associations. Moreover, based on these findings we discuss whether it is feasible to develop agrochemicals that combine NPs and Trichoderma strains to generate more sustainable products or not.


2021 ◽  
Vol 11 (5) ◽  
pp. 2233
Author(s):  
Maria J. Ferreira ◽  
Angela Cunha ◽  
Sandro Figueiredo ◽  
Pedro Faustino ◽  
Carla Patinha ◽  
...  

Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes represents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia ramosissima is one of the least-studied species in terms of microbiome composition and the effect of sediment properties on the diversity of plant-growth promoting bacteria associated with the roots. In this work, we aimed at isolating and characterizing halotolerant bacteria associated with the rhizosphere and root tissues of S. ramosissima, envisaging their application in saline agriculture. Endophytic and rhizosphere bacteria were isolated from wild and crop cultivated plants, growing in different estuarine conditions. Isolates were identified based on 16S rRNA sequences and screened for plant-growth promotion traits. The subsets of isolates from different sampling sites were very different in terms of composition but consistent in terms of the plant-growth promoting traits represented. Bacillus was the most represented genus and expressed the wider range of extracellular enzymatic activities. Halotolerant strains of Salinicola, Pseudomonas, Oceanobacillus, Halomonas, Providencia, Bacillus, Psychrobacter and Brevibacterium also exhibited several plant-growth promotion traits (e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization). Considering the taxonomic diversity and the plant-growth promotion potential of the isolates, the collection represents a valuable resource that can be used to optimize the crop cultivation of Salicornia under different environmental conditions and for the attenuation of salt stress in non-halophytes, considering the global threat of arable soil salinization.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


Author(s):  
Cun Yu ◽  
Ying Yao

Endophytic fungi were isolated from Phoebe bournei and their diversity and antimicrobial and plant growth-promoting activities were investigated. Of the 389 isolated endophytic fungi, 88.90% belonged to phylum Ascomycota and 11.10% to phylum Basidiomycota. The isolates were grouped into four taxonomic classes, 11 orders, 30 genera, and 45 species based on internal transcribed spacer sequencing and morphologic analysis. The host showed a strong affinity for the genera Diaporthe and Phyllosticta. The diversity of the fungi was highest in autumn, followed by spring and summer, and was lowest in winter. The fungi exhibited notable tissue specificity in P. bournei, and the species richness and diversity were highest in the root across all seasons. Five isolates showed antimicrobial activity against eight plant pathogens, and reduced the incidence of leaf spot disease in P. bournei. Additionally, 9 biocontrol isolates showed plant growth-promoting activity, with five significantly promoting P. bournei seedling growth. This is the first report on the endophytic fungi of P. bournei and their potential applicability to plant disease control and growth promotion.


2015 ◽  
Vol 9 (3) ◽  
pp. 24-37 ◽  
Author(s):  
Mohammed Faisal Ansari ◽  
Devayani R. Tipre ◽  
Shailesh R. Dave

Organic farming is gaining popularity where bio-inoculants could play a key role in promoting the growth of plants. The liquid biofertilizers concept is new to farmers and developed recently. Lots of liquid biofertilizers formulations and field efficiency were shown in the past by various researchers, but the plant growth promoting (PGP) efficiency of the liquid biofertilizers isolates were not reported till date. In the present work 6 different commercially available liquid biofertilizers were used to isolate the organism. These isolated cultures were used to study their PGP efficiency with respect to phosphate solubilization and production of EPS, IAA, siderophore, ammonia, chitinase, ACC-deaminase and HCN. The phosphate solubilization was shown up to 303 g/ml by APS isolate. EPS production was shown by using different C sources and production up to 24 g/l was shown by studied isolated. Most of the organisms studied were able to produce IAA and highest production was shown up to 20 g/ml. More than 65% studied isolates showed siderophore and ACC-deaminase production. The present study shows that the commercial liquid biofertilizer isolates possess multiple traits of plant growth promotion. DOI: http://dx.doi.org/10.3126/ijls.v9i3.12463   International Journal of Life Sciences 9 (3): 2015; 24-37


Sign in / Sign up

Export Citation Format

Share Document