scholarly journals Upregulation of Cytokines and Differentiation of Th17 and Treg by Dendritic Cells: Central Role of Prostaglandin E2 Induced by Mycobacterium bovis

2020 ◽  
Vol 8 (2) ◽  
pp. 195 ◽  
Author(s):  
Han Liu ◽  
Xuekai Xiong ◽  
Wenjun Zhai ◽  
Tingting Zhu ◽  
Xiaojie Zhu ◽  
...  

Mycobacterium bovis (M. bovis) is a zoonotic pathogen that causes bovine and human tuberculosis. Dendritic cells play a critical role in initiating and regulating immune responses by promoting antigen-specific T-cell activation. Prostaglandin E2 (PGE2)-COX signaling is an important mediator of inflammation and immunity and might be involved in the pathogenesis of M. bovis infection. Therefore, this study aimed to reveal the character of PGE2 in the differentiation of naïve CD4+ T cells induced by infected dendritic cells (DCs). Murine bone marrow-derived DCs were pre-infected with M. bovis and its attenuated strain M. bovis bacillus Calmette-Guérin (BCG). Then, the infected DCs were co-cultured with naïve CD4+ T cells with or without the cyclooxygenase (COX) inhibitor indomethacin. Quantitative RT-PCR analysis and protein detection showed that PGE2/COX-2 signaling was activated, shown by the upregulation of PGE2 production as well as COX-2 and microsomal PGE2 synthase (mPGES1) transcription in DCs specifically induced by M. bovis and BCG infection. The further co-culture of infected DCs with naïve CD4+ T cells enhanced the generation of inflammatory cytokines IL-17 and IL-23, while indomethacin suppressed their production. Following this, the differentiation of regulatory T cells (Treg) and Th17 cell subsets was significantly induced by the infected DCs rather than uninfected DCs. Meanwhile, M. bovis infection stimulated significantly higher levels of IL-17 and IL-23 and the differentiation of Treg and Th17 cell subsets, while BCG infection led to higher levels of TNF-α and IL-12, but lower proportions of Treg and Th17 cells. In mice, M. bovis infection generated more bacterial load and severe abnormalities in spleens and lungs, as well as higher levels of COX-2, mPGE2 expression, Treg and Th17 cell subsets than BCG infection. In conclusion, PGE2/COX-2 signaling was activated in DCs by M. bovis infection and regulated differentiation of Treg and Th17 cell subsets through the crosstalk between DCs and naive T cells under the cytokine atmosphere of IL-17 and IL-23, which might contribute to M. bovis pathogenesis in mice.

Microbiology ◽  
2013 ◽  
Vol 159 (Pt_2) ◽  
pp. 366-379 ◽  
Author(s):  
Xiansong Zhang ◽  
Shuai Li ◽  
Yu Luo ◽  
Yingyu Chen ◽  
Shi Cheng ◽  
...  

Biomedicines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 52 ◽  
Author(s):  
Samuel Darkwah ◽  
Nodoka Nago ◽  
Michael G. Appiah ◽  
Phyoe Kyawe Myint ◽  
Eiji Kawamoto ◽  
...  

Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1β (IL-1β). Interestingly, IL-1β-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.


Blood ◽  
2013 ◽  
Vol 122 (8) ◽  
pp. 1419-1427 ◽  
Author(s):  
Jamma Trinath ◽  
Pushpa Hegde ◽  
Meenu Sharma ◽  
Mohan S. Maddur ◽  
Magalie Rabin ◽  
...  

Key Points IVIg expands Tregs in vitro and in vivo via induction of COX-2–dependent PGE2 in DCs. These functions of IVIg are mediated in part via interaction of IVIg and F(ab′)2 fragments of IVIg with DC-SIGN on DCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jake W. Rhodes ◽  
Rachel A. Botting ◽  
Kirstie M. Bertram ◽  
Erica E. Vine ◽  
Hafsa Rana ◽  
...  

AbstractTissue mononuclear phagocytes (MNP) are specialised in pathogen detection and antigen presentation. As such they deliver HIV to its primary target cells; CD4 T cells. Most MNP HIV transmission studies have focused on epithelial MNPs. However, as mucosal trauma and inflammation are now known to be strongly associated with HIV transmission, here we examine the role of sub-epithelial MNPs which are present in a diverse array of subsets. We show that HIV can penetrate the epithelial surface to interact with sub-epithelial resident MNPs in anogenital explants and define the full array of subsets that are present in the human anogenital and colorectal tissues that HIV may encounter during sexual transmission. In doing so we identify two subsets that preferentially take up HIV, become infected and transmit the virus to CD4 T cells; CD14+CD1c+ monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2).


2011 ◽  
Vol 188 (3) ◽  
pp. 1168-1177 ◽  
Author(s):  
Xiongfei Xu ◽  
Hai Yi ◽  
Zhenhong Guo ◽  
Cheng Qian ◽  
Sheng Xia ◽  
...  

2009 ◽  
Vol 182 (6) ◽  
pp. 3372-3379 ◽  
Author(s):  
Vincent Lombardi ◽  
Laurence Van Overtvelt ◽  
Stéphane Horiot ◽  
Philippe Moingeon

Sign in / Sign up

Export Citation Format

Share Document