scholarly journals Identification and Heterologous Expression of the Albucidin Gene Cluster from the Marine Strain Streptomyces Albus Subsp. Chlorinus NRRL B-24108

2020 ◽  
Vol 8 (2) ◽  
pp. 237 ◽  
Author(s):  
Maksym Myronovskyi ◽  
Birgit Rosenkränzer ◽  
Marc Stierhof ◽  
Lutz Petzke ◽  
Tobias Seiser ◽  
...  

Herbicides with new modes of action and safer toxicological and environmental profiles are needed to manage the evolution of weeds that are resistant to commercial herbicides. The unparalleled structural diversity of natural products makes these compounds a promising source for new herbicides. In 2009, a novel nucleoside phytotoxin, albucidin, with broad activity against grass and broadleaf weeds was isolated from a strain of Streptomyces albus subsp. chlorinus NRRL B-24108. Here, we report the identification and heterologous expression of the previously uncharacterized albucidin gene cluster. Through a series of gene inactivation experiments, a minimal set of albucidin biosynthetic genes was determined. Based on gene annotation and sequence homology, a model for albucidin biosynthesis was suggested. The presented results enable the construction of producer strains for a sustainable supply of albucidin for biological activity studies.

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 435 ◽  
Author(s):  
Marta Rodríguez Estévez ◽  
Maksym Myronovskyi ◽  
Nils Gummerlich ◽  
Suvd Nadmid ◽  
Andriy Luzhetskyy

Streptomycetes represent an important reservoir of active secondary metabolites with potential applications in the pharmaceutical industry. The gene clusters responsible for their production are often cryptic under laboratory growth conditions. Characterization of these clusters is therefore essential for the discovery of new microbial pharmaceutical drugs. Here, we report the identification of the previously uncharacterized nybomycin gene cluster from the marine actinomycete Streptomyces albus subsp. chlorinus through its heterologous expression. Nybomycin has previously been reported to act against quinolone-resistant Staphylococcus aureus strains harboring a mutated gyrA gene but not against those with intact gyrA. The nybomycin-resistant mutants generated from quinolone-resistant mutants have been reported to be caused by a back-mutation in the gyrA gene that restores susceptibility to quinolones. On the basis of gene function assignment from bioinformatics analysis, we suggest a model for nybomycin biosynthesis.


2021 ◽  
Vol 9 (8) ◽  
pp. 1640
Author(s):  
Constanze Lasch ◽  
Marc Stierhof ◽  
Marta Rodríguez Estévez ◽  
Maksym Myronovskyi ◽  
Josef Zapp ◽  
...  

The intriguing structural complexity of molecules produced by natural organisms is uncontested. Natural scaffolds serve as an important basis for the development of molecules with broad applications, e.g., therapeutics or agrochemicals. Research in recent decades has demonstrated that by means of classic metabolite extraction from microbes only a small portion of natural products can be accessed. The use of genome mining and heterologous expression approaches represents a promising way to discover new natural compounds. In this paper we report the discovery of a novel cyclic pentapeptide called bonsecamin through the heterologous expression of a cryptic NRPS gene cluster from Streptomyces albus ssp. chlorinus NRRL B-24108 in Streptomyces albus Del14. The new compound was successfully isolated and structurally characterized using NMR. The minimal set of genes required for bonsecamin production was determined through bioinformatic analysis and gene deletion experiments. A biosynthetic route leading to the production of bonsecamin is proposed in this paper.


2020 ◽  
Vol 8 (11) ◽  
pp. 1800
Author(s):  
Constanze Lasch ◽  
Marc Stierhof ◽  
Marta Rodríguez Estévez ◽  
Maksym Myronovskyi ◽  
Josef Zapp ◽  
...  

Since the 1950s, natural products of bacterial origin were systematically developed to be used as drugs with a wide range of medical applications. The available treatment options for many diseases are still not satisfying, wherefore, the discovery of new structures has not lost any of its importance. Beyond the great variety of already isolated and characterized metabolites, Streptomycetes still harbor uninvestigated gene clusters whose products can be accessed using heterologous expression in host organisms. This works presents the discovery of a set of structurally novel secondary metabolites, dudomycins A to D, through the expression of a cryptic NRPS cluster from Streptomyces albus ssp. Chlorinus NRRL B-24108 in the heterologous host strain Streptomyces albus Del14. A minimal set of genes, required for the production of dudomycins, was defined through gene inactivation experiments. This paper also proposes a model for dudomycin biosynthesis.


ChemBioChem ◽  
2012 ◽  
Vol 13 (13) ◽  
pp. 1946-1952 ◽  
Author(s):  
Xiaoying Bian ◽  
Fan Huang ◽  
Francis A. Stewart ◽  
Liqiu Xia ◽  
Youming Zhang ◽  
...  

2021 ◽  
Author(s):  
Yang Liu ◽  
Haibo Zhou ◽  
Qiyao Shen ◽  
Guangzhi Dai ◽  
Fu Yan ◽  
...  

2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2013 ◽  
Vol 56 (7) ◽  
pp. 619-627 ◽  
Author(s):  
JinE Li ◽  
ZhengYan Guo ◽  
Wei Huang ◽  
XiangXi Meng ◽  
GuoMin Ai ◽  
...  

2021 ◽  
Vol 192 ◽  
pp. 112927
Author(s):  
Hong-Zhen Shu ◽  
Cheng Peng ◽  
Lan Bu ◽  
Li Guo ◽  
Fei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document