scholarly journals Plant Growth Promotion Abilities of Phylogenetically Diverse Mesorhizobium Strains: Effect in the Root Colonization and Development of Tomato Seedlings

2020 ◽  
Vol 8 (3) ◽  
pp. 412
Author(s):  
Esther Menéndez ◽  
Juan Pérez-Yépez ◽  
Mercedes Hernández ◽  
Ana Rodríguez-Pérez ◽  
Encarna Velázquez ◽  
...  

Mesorhizobium contains species widely known as nitrogen-fixing bacteria with legumes, but their ability to promote the growth of non-legumes has been poorly studied. Here, we analyzed the production of indole acetic acid (IAA), siderophores and the solubilization of phosphate and potassium in a collection of 24 strains belonging to different Mesorhizobium species. All these strains produce IAA, 46% solubilized potassium, 33% solubilize phosphate and 17% produce siderophores. The highest production of IAA was found in the strains Mesorhizobium ciceri CCANP14 and Mesorhizobium tamadayense CCANP122, which were also able to solubilize potassium. Moreover, the strain CCANP14 showed the maximum phosphate solubilization index, and the strain CCANP122 was able to produce siderophores. These two strains were able to produce cellulases and cellulose and to originate biofilms in abiotic surfaces and tomato root surface. Tomato seedlings responded positively to the inoculation with these two strains, showing significantly higher plant growth traits than uninoculated seedlings. This is the first report about the potential of different Mesorhizobium species to promote the growth of a vegetable. Considering their use as safe for humans, animals and plants, they are an environmentally friendly alternative to chemical fertilizers for non-legume crops in the framework of sustainable agriculture.

2008 ◽  
Vol 65 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Carla da Silva Sousa ◽  
Ana Cristina Fermino Soares ◽  
Marlon da Silva Garrido

Studies with streptomycetes in biocontrol programs and plant growth promotion are presented as technological alternatives for environmental sustainable production. This work has the objective of characterizing six isolates of streptomycetes aiming the production of extracellular enzymes, indole acetic acid, capacity for phosphate solubilization, root colonization and growth under different pH and salinity levels. For detection of enzyme activity the isolates were grown in culture media with the enzyme substrates as sole carbon source. The root colonization assay was performed on tomato seedlings grown on 0.6% water-agar medium. Growth under different pH and salinity levels was evaluated in AGS medium with 1%, 1.5%, 2%, 2.5%, and 3% NaCl, and pH levels adjusted to 5.0, 5.5, 6.0, 6.5, and 7.0. All isolates produced the enzymes amylase, catalase, and lipase, as well as indole acetic acid. With one exception (AC-92), all isolates presented cellulolytic and chitinolytic activity, and only AC-26 did not show xylanolytic activity. The isolates AC-147, AC-95, and AC-29 were the highest producers of siderophores. The isolates AC-26 and AC-29 did not show capacity for phosphate solubilization. All isolates colonized tomato roots in vitro, and AC-92 grew under all pH and salinity levels tested. The streptomycetes tested were considered as potential biocontrol and plant growth promotion agents.


2020 ◽  
Vol 40 (12) ◽  
pp. 1726-1743
Author(s):  
Agnieszka Szuba ◽  
Łukasz Marczak ◽  
Izabela Ratajczak

Abstract It is believed that resource exchange, which is responsible for intensified growth of ectomycorrhizal plants, occurs in the fungus–plant interface. However, increasing evidence indicates that such intensified plant growth, especially root growth promotion, may be independent of root colonization. Nevertheless, the molecular adjustments in low-colonized plants remain poorly understood. Here, we analysed the metabolome of Populus × canescens microcuttings characterized by significantly increased growth triggered by inoculation with Paxillus involutus, which successfully colonized only 2.1 ± 0.3% of root tips. High-throughput metabolomic analyses of leaves, stems and roots of Populus × canescens microcuttings supplemented with leaf proteome data were performed to determine ectomycorrhiza-triggered changes in N-, P- and C-compounds. The molecular adjustments were relatively low in low-colonized (M) plants. Nevertheless, the levels of foliar phenolic compounds were significantly increased in M plants. Increases of total soluble carbohydrates, starch as well as P concentrations were also observed in M leaves along with the increased abundance of the majority of glycerophosphocholines detected in M roots. However, compared with the leaves of the non-inoculated controls, M leaves presented lower concentrations of both N and most photosynthesis-related proteins and all individual mono- and disaccharides. In M stems, only a few compounds with different abundances were detected, including a decrease in carbohydrates, which was also detected in M roots. Thus, these results suggest that the growth improvement of low-colonized poplar trees is independent of an increased photosynthesis rate, massively increased resource (C:N) exchange and delivery of most nutrients to leaves. The mechanism responsible for poplar growth promotion remains unknown but may be related to increased P uptake, subtle leaf pigment changes, the abundance of certain photosynthetic proteins, slight increases in stem and root amino acid levels and the increase in flavonoids (increasing the antioxidant capacity in poplar), all of which improve the fitness of low-colonized poplars.


2014 ◽  
Vol 65 (1) ◽  
pp. 71-77
Author(s):  
Ghazala Nasim ◽  
Sobia Mushtaq ◽  
Irum Mukhtar ◽  
Ibatsam Khokhar

AbstractPenicilliumspp. are well known to produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. In this study, effects of culture filtrate of differentPenicilliumspp. were tested on tomato seeds. On the whole, presoaking of seeds in filtrates of the ninePenicilliumisolates tested, significantly increased seed germination when compared with the control seeds. Cultural extracts ofP. expensumandP. billiwere highly effective in growth promotion up to 90%. It was also observed thatP. implicatumandP. oxlalicamsignificantly enhanced the root growth in tomato seedling as compare to other species. In case of shoot length,P. verrucosum(3.38),P. granulatum(2.81) andP. implicatum(2.62) were effective. HoweverP. implicatumwas quite promising to increase shoot and root length in tomato seedlings. Where asP. simplicissimiumandP. citrinumwere leas effective on seedling growth. The plant growth promoting ability ofPenicilliumstrains may help in growth permotion in other plants and crops.Penicilliumspp. are already known for producing mycotoxin and enzymes. Plant growth promoting ability ofPenicilliumspp will open new aspects of research and investigations. The role ofPenicil-liumspp. in tomato plant growth requires further exploration.


1997 ◽  
Vol 43 (4) ◽  
pp. 354-361 ◽  
Author(s):  
V. K. Pillay ◽  
J. Nowak

The effects of inoculum density (0, 4.6 × 107, 4.2 × 108, and 8.8 × 108 cfu∙mL−1), temperature (10, 20, and 30 °C), and plant genotype (cultivars Celebrity, Blazer, Scotia, and Mountain Delight) on bacterial colonization and plant growth promotion were investigated in a gnotobiotic system. An in vitro dual culture of tomato (Lycopersicon esculentum L.) plantlets and a Pseudomonas sp., strain PsJN, were used. Epiphytic (external) and endophytic (internal) bacterial populations were determined to evaluate plantlet colonization. Shoot and root biomass of bacterized plantlets was significantly higher (p ≤ 0.05) than that of nonbacterized controls. Growth promotion was best with inoculum densities of 3 × 108 – 7 × 108 cfu∙mL−1 at 20 °C, particularly in the early maturing cultivars Blazer and Scotia. Lower inoculum densities were required to maximize root growth (approximately 1 × 108 cfu∙mL−1) than shoot growth (approximately 3 × 108 cfu∙mL−1). Shoot surface populations did not vary with inoculum density or temperature, but the bacterium colonized the shoot exterior of cultivars Celebrity, Mountain Delight, and Scotia better than cultivar Blazer. The root surface populations increased linearly with increasing inoculum density (within a range of 107–108 cfu∙mL−1), decreased with increasing temperatures (from 10 to 30 °C), and were higher for the main season cultivar Celebrity than for cultivars Blazer, Scotia, and Mountain Delight. Populations of shoot endophytes did not vary with initial inoculum density or genotype but were affected by temperature; the highest colonization was at 10 °C. The number of root endophytes was also highest at 10 °C at the inoculum density of approximately 4 × 108 cfu∙mL−1 and did not vary with genotypes. The experiments clearly indicate that there was no relationship between root surface colonization and plant growth promotion. However, the range of inoculum levels (3 × 108 – 7 × 108 cfu∙mL−1) that promoted colonization of the inner root tissues (endophytic) also best promoted plant growth. A possible biostimulation threshold within the tissues of the inoculated plants under conditions favourable to the growth of tomato is proposed.Key words: Pseudomonas sp., tomato, colonization, growth promotion.


2021 ◽  
Vol 9 (8) ◽  
pp. 1582
Author(s):  
Spenser Waller ◽  
Stacy L. Wilder ◽  
Michael J. Schueller ◽  
Alexandra B. Housh ◽  
Stephanie Scott ◽  
...  

Herbaspirillum seropedicae, as an endophyte and prolific root colonizer of numerous cereal crops, occupies an important ecological niche in agriculture because of its ability to promote plant growth and potentially improve crop yield. More importantly, there exists the untapped potential to harness its ability, as a diazotroph, to fix atmospheric N2 as an alternative nitrogen resource to synthetic fertilizers. While mechanisms for plant growth promotion remain controversial, especially in cereal crops, one irrefutable fact is these microorganisms rely heavily on plant-borne carbon as their main energy source in support of their own growth and biological functions. Biological nitrogen fixation (BNF), a microbial function that is reliant on nitrogenase enzyme activity, is extremely sensitive to the localized nitrogen environment of the microorganism. However, whether internal root colonization can serve to shield the microorganisms and de-sensitize nitrogenase activity to changes in the soil nitrogen status remains unanswered. We used RAM10, a GFP-reporting strain of H. seropedicae, and administered radioactive 11CO2 tracer to intact 3-week-old maize leaves and followed 11C-photosynthates to sites within intact roots where actively fluorescing microbial colonies assimilated the tracer. We examined the influence of administering either 1 mM or 10 mM nitrate during plant growth on microbial demands for plant-borne 11C. Nitrogenase activity was also examined under the same growth conditions using the acetylene reduction assay. We found that plant growth under low nitrate resulted in higher nitrogenase activity as well as higher microbial demands for plant-borne carbon than plant growth under high nitrate. However, carbon availability was significantly diminished under low nitrate growth due to reduced host CO2 fixation and reduced allocation of carbon resources to the roots. This response of the host caused significant inhibition of microbial growth. In summary, internal root colonization did little to shield these endophytic microorganisms from the nitrogen environment.


Sign in / Sign up

Export Citation Format

Share Document