scholarly journals Forest Tree Associated Bacterial Diffusible and Volatile Organic Compounds against Various Phytopathogenic Fungi

2020 ◽  
Vol 8 (4) ◽  
pp. 590 ◽  
Author(s):  
Wei-Liang Kong ◽  
Pu-Sheng Li ◽  
Xiao-Qin Wu ◽  
Tian-Yu Wu ◽  
Xiao-Rui Sun

Plant growth-promoting rhizobacteria (PGPR) can potentially be used as an alternative strategy to control plant diseases. In this study, strain ST–TJ4 isolated from the rhizosphere soil of a healthy poplar was found to have a strong antifungal activity against 11 phytopathogenic fungi in agriculture and forestry. Strain ST–TJ4 was identified as Pseudomonas sp. based on 16S rRNA-encoding gene sequences. The bacterium can produce siderophores, cellulase, and protease, and has genes involved in the synthesis of phenazine, 1–phenazinecarboxylic acid, pyrrolnitrin, and hydrogen cyanide. Additionally, the volatile compounds released by strain ST–TJ4 can inhibit the mycelial growth of plant pathogenic fungi more than diffusible substances can. Based on volatile compound profiles of strain ST–TJ4 obtained from headspace collection and GC–MS/MS analysis, 1-undecene was identified. In summary, the results suggested that Pseudomonas sp. ST–TJ4 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.

2020 ◽  
Author(s):  
Wei-Liang Kong ◽  
Pu-Sheng Li ◽  
Xiao-Qin Wu ◽  
Tian-Yu Wu ◽  
Xiao-Rui Sun

Abstract Plant growth-promoting rhizobacteria can potentially be used as an alternative strategy to control plant disease. In this study, strain ST-TJ4 isolated from the rhizosphere soil of a healthy poplar was found to have strong antifungal activity against 11 phytopathogenic fungi in agriculture and forestry. Strain ST-TJ4 was identified as Pseudomonas chlororaphis subsp. aurantiaca based on 16S rDNA sequences. The bacterium can produce siderophores, cellulase, and protease, and has genes involved in the synthesis of phenazine, 1-phenazinecarboxylic acid, pyrrolnitrin, and hydrogen cyanide. Moreover, the volatile compounds released by strain ST-TJ4 can inhibit the mycelial growth of plant pathogenic fungi more than diffusible substances can. Based on volatile compound profiles of strain ST-TJ4 obtained from headspace collection and GC-MS/MS analysis, 1-undecene was identified. In summary, the results suggested that P. chlororaphis subsp. aurantiaca ST-TJ4 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
RAKHILYA AIPOVA ◽  
AIZHAN ABDYKADYROVA ◽  
DMITRY SILAYEV ◽  
ERKIN TAZABEKOVA ◽  
IRINA OSHERGINA ◽  
...  

Abstract. Aipova R, Abdykadyrova A, Silayev D, Tazabekova E, Oshergina I, Ten E, Kurmanbaye A. 2020. The fabrication of the complex bio-fertilizer for wheat cultivation based on collection bacteria of the PGPR group. Biodiversitas 21: 5021-5028. The development of new types of biological products based on microbial complexes from local bacterial strains is a great theoretical and practical interest for agriculture. It can provide an opportunity for better preservation of the natural properties of the wheat products under extreme conditions. The aim of this study was to obtain and test a biological product to increase wheat productivity in northern Kazakhstan. Our data indicate the potential of Plant Growth-Promoting Rhizobacteria (PGPR) group bacteria for the development of biofertilizers and biopesticides. For instance, the bacteria B. mojavensis showed effectiveness in the experiments with the wheat (Astana-2 type). We observed an increase in wheat yield by 15% under conditions of artificial infection of crops with snow mold (by 2.5fold compared with the control). The results demonstrated that the B. mojavensis Lhv 97 strain can be used as an ingredient of biological products due to its activity against plant diseases caused by phytopathogenic fungi.


2021 ◽  
Author(s):  
Adrien Anckaert ◽  
◽  
Anthony Arguelles Arias ◽  
Grégory Hoff ◽  
Maryline Calonne-Salmon ◽  
...  

Biocontrol agents (BCAs) based on plant growth promoting rhizobacteria have recently been developed as alternatives to chemical pesticides. Among those beneficial bacteria, Bacillus spp. are one of the most promising BCAs. A wide range of bioactive secondary metabolites (BSMs) are involved in biocontrol via antibiosis to phytopathogens and/or via elicitation of systemic resistance in their host plants. This chapter illustrates the diversity of pathosystems in which BCA based on Bacillus spp. have proved effective. It describes the mechanisms underpinning this biocontrol activity via production of a wide range of enzymes, proteins and small-size BSMs. As these BSMs are clearly involved in pathogen control, we emphasise the importance of understanding the ecological factors influencing their production. In the last part of the chapter, we highlight the potential interactions between Bacillus spp. and other soil microorganisms in developing consortia of biocontrol agents combining species with synergistic activities for plant health improvement.


Agric ◽  
2018 ◽  
Vol 30 (1) ◽  
pp. 25-32
Author(s):  
Reginawanti Hindersah ◽  
Marthin Kalay ◽  
Abraham Talahaturuson ◽  
Yansen Lakburlawal

Azotobacter is Plant Growth Promoting Rhizobacteria through the mechanism of nitrogen fixation and phytohormon production but this rhizobacteria has a role to control plant diseases. The objective of experiment was to evaluate the activity of Azotobacter as biofertilizers as well as biocontrol on long bean cultivation in damping off endemic land in Ambon city, Maluku Province. The field experiment was arranged in completely randomized block design. Inoculation of long bean by Azotobacter has been done by seed inoculation, soil inoculation before planting, and plant inoculation. Plants treated with Azotobacter received fertilizer NPK of ¾ or ½ dosage recommendation while control plants were received 100% NPK. Research showed that no differences between yield of long bean inoculated with Azotobacter sp +reduced doses of NPK with that of control plants. Any application method of Azotobacter inoculation lowered damping off diseases incidence significantly until 10 days after planting, but no effect of inoculation on late blight at 21 days after planting. This study confirmed that Azotobacter has dual activity to reduce the dose of NPK fertilizer and control damping off.


2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


2011 ◽  
pp. 111-120
Author(s):  
Dragana Josic ◽  
Radmila Pivic ◽  
Snezana Pavlovic ◽  
Sasa Stojanovic ◽  
Goran Aleksic ◽  
...  

Marshmallow is a host of a number of saprophytic and parasitic fungi in Serbia. The seeds of marshmallow are contaminated with fungi from different genera, especially Alternaria and Fusarium, which significantly reduced seed germination and caused seedling decay. In this study we investigate antagnonism of indigenous Bacillus sp. isolate Q3 against marshmallow mycopopulation. Bacillus sp. Q3 was isolated from maize rhizosphere, characterized by polyphasic approch and tested for plant growth promoting treats. Bacillus sp. Q3 produced antifungal metabolites with growth inhibition activity against numerous fungi in dual culture: 61.8% of Alternaria alternata, 74.8% of Myrothecium verrucaria and 33.6% of Sclerotinia sclerotiorum. That effect could be caused by different antifungal metabolites including siderophores, hydrolytic enzymes, organic acids and indole acetic acid (IAA). Suppression of natural marshmallow seed infection by Q3 isolate was observed. The seeds were immersed in different concentrations of bacterial suspension during 2h and their infections by phytopathogenic fungi were estimated. The results showed significant reduction of seed infection by Alternaria spp. The presented results indicate possible application of this isolate as promising biological agent for control of marshmallow seed pathogenic fungi.


2005 ◽  
Vol 82 (3) ◽  
pp. 85-102 ◽  
Author(s):  
C.L. Doumbou ◽  
M.K. Hamby Salove ◽  
D.L. Crawford ◽  
C. Beaulieu

Actinomycetes represent a high proportion of the soil microbial biomass and have the capacity to produce a wide variety of antibiotics and of extracellular enzymes. Several strains of actinomycetes have been found to protect plants against plant diseases. This review focuses on the potential of actinomycetes as (a) source of agroactive compounds, (b) plant growth promoting organisms, and (c) biocontrol tools of plant diseases. This review also addresses examples of biological control of fungal and bacterial plant pathogens by actinomycetes species which have already reached the market or are likely to be exploited commercially within the next few years.


Sign in / Sign up

Export Citation Format

Share Document