scholarly journals Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks

2021 ◽  
Vol 9 (1) ◽  
pp. 160
Author(s):  
Monika Novak Babič ◽  
Nina Gunde-Cimerman

Global warming, globalization, industrialization, and the rapidly growing population at present increasingly affect the production of safe drinking water. In combination with sustainable bio-based or recycled materials, used for water distribution systems, these factors promote emerging pathogens, including fungi. They can proliferate in oligotrophic water systems, affect the disinfection process, degrade building materials, and cause diseases in humans. In this study, we explored fungal-based degradation of modern concrete water storage tanks and the presence of fungi in chlorinated drinking water at the entrance and exit of the tanks. The degradation potential of isolated 52 fungal strains and their growth at different oligotrophic conditions was tested in vitro. Forty percent of strains grew at extremely oligotrophic conditions, and 50% classified as aerophilic. Two-thirds of tested strains produced acids, with Penicillium strains as the best producers. Only 29.7% of the strains were able to grow at 37 °C, and none of them was isolated from drinking water at consumers’ taps. Although not yet part of the guidelines for building materials in contact with drinking water, fungi should be taken into consideration in case of visible degradation. Their number of consumers’ endpoints should be checked to exclude possible health risks for consumers.

2001 ◽  
Vol 1 (3) ◽  
pp. 33-38 ◽  
Author(s):  
S. Rigal ◽  
J. Baron

Corrosion can lead to degradation of water quality and affect the mechanical characteristics of drinking water piping systems. Alternative solutions consist of replacing traditional inorganic materials by plastic materials. A review of the organic materials used in drinking water distribution systems is presented in relation to their specific application. Future aspects of the European Regulation for Drinking Water Construction Products and the next European Approval Scheme (EAS) are developed.


2021 ◽  
Vol 3 (1) ◽  
pp. 33-49
Author(s):  
John Tulirinya ◽  
Richard O Awichi ◽  
Fulgensia M Kamugisha ◽  
Moses Nagulama

Water storage tanks are usually utilized in water distribution systems (WDS) to meet the water demand fluctuations. Chlorine is the most common disinfectant used to disinfect water supplies. However, variations in the rate of chlorine decay in these storage tanks are one of the greatest limiting factors in ensuring adequate water treatment process and giving guarantee to its efficiency. These variations could be due to some inadequately tested mechanisms of chlorine reactions in bulk fluid, chlorine reactions with storage tank walls, and natural evaporation. This study presents Computational Fluid Dynamics (CFD) modelling approach to assess the influence of evaporation on residual chlorine in water storage tanks. Findings indicate that an increase in the evaporation rate accelerates the rate at which residual chlorine is lost. It is concluded that temperature is the main factor influencing evaporation, which in turn causes the disappearance of residual chlorine within the water storage tanks.


2004 ◽  
Vol 49 (9) ◽  
pp. 219-226 ◽  
Author(s):  
P. Tomboulian ◽  
L. Schweitzer ◽  
K. Mullin ◽  
J. Wilson ◽  
D. Khiari

In order to assist drinking water utilities with identifying the possible sources and causes of taste-and-odor conditions associated with materials used in distribution systems, we evaluated information from case studies and a database from the National Sanitation Foundation (NSF), International. This database identified chemicals that had leached from drinking water system components during testing of materials under ANSI/NSF Standard 61, which provides information to water utilities on potential taste-and-odor and health concerns from the use of new materials. The data were arranged to provide a process for locating the potential source of a taste-and-odor event. After a sensory analysis is conducted on the drinking water samples, the descriptor can be matched with categories on the "Drinking Water Taste and Odor Wheel 2000" in order to suggest the candidate material.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 187-191
Author(s):  
M.M. Critchley ◽  
N.J. Cromar ◽  
H.J. Fallowfield

Biofilms have been extensively characterised within drinking water distribution systems. However, the significance of materials on biofilm species diversity is not established. This study investigated the community composition of biofilms on plumbing materials receiving filtered and unfiltered water supplies. Biofilms were extracted from polybutylene, polyethylene, cross-linked polyethylene, unplasticised polyvinyl chloride and copper tubes in sampling rigs receiving Murray-Onkaparinga water before or after filtration. Biofilms were extracted and analysed for fatty acid composition using the FAME™ methodology. There were differences in the fatty acid profiles of biofilms and the respective water supplies, indicating differences in the attached and planktonic communities. The results also showed significant differences in the fatty acid profiles of biofilms on the polymer materials compared to copper, suggesting variations in biofilm populations on the different materials. The potential for materials to select for microbial populations has significant implications for the ecology of drinking water biofilms.


2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


Sign in / Sign up

Export Citation Format

Share Document