scholarly journals Taxonomic Evaluation of the Heyndrickxia (Basonym Bacillus) sporothermodurans Group (H. sporothermodurans, H. vini, H. oleronia) Based on Whole Genome Sequences

2021 ◽  
Vol 9 (2) ◽  
pp. 246
Author(s):  
Gregor Fiedler ◽  
Anna-Delia Herbstmann ◽  
Etienne Doll ◽  
Mareike Wenning ◽  
Erik Brinks ◽  
...  

The genetic heterogeneity of Heyndrickxia sporothermodurans (formerly Bacillussporothermodurans) was evaluated using whole genome sequencing. The genomes of 29 previously identified Heyndrickxiasporothermodurans and two Heyndrickxia vini strains isolated from ultra-high-temperature (UHT)-treated milk were sequenced by short-read (Illumina) sequencing. After sequence analysis, the two H. vini strains could be reclassified as H. sporothermodurans. In addition, the genomes of the H.sporothermodurans type strain (DSM 10599T) and the closest phylogenetic neighbors Heyndrickxiaoleronia (DSM 9356T) and Heyndrickxia vini (JCM 19841T) were also sequenced using both long (MinION) and short-read (Illumina) sequencing. By hybrid sequence assembly, the genome of the H. sporothermodurans type strain was enlarged by 15% relative to the short-read assembly. This noticeable increase was probably due to numerous mobile elements in the genome that are presumptively related to spore heat tolerance. Phylogenetic studies based on 16S rDNA gene sequence, core genome, single-nucleotide polymorphisms and ANI/dDDH, showed that H. vini is highly related to H. sporothermodurans. When examining the genome sequences of all H.sporothermodurans strains from this study, together with 4 H. sporothermodurans genomes available in the GenBank database, the majority of the 36 strains examined occurred in a clonal lineage with less than 100 SNPs. These data substantiate previous reports on the existence and spread of a genetically highly homogenous and heat resistant spore clone, i.e., the HRS-clone.

Author(s):  
Emmanuel Lecorche ◽  
Côme Daniau ◽  
Kevin La ◽  
Faiza Mougari ◽  
Hanaa Benmansour ◽  
...  

Abstract Background Post-surgical infections due to Mycobacterium chimaera appeared as a novel nosocomial threat in 2015, with a worldwide outbreak due to contaminated heater-cooler units used in open chest surgery. We report the results of investigations conducted in France including whole genome sequencing comparison of patient and HCU isolates. Methods We sought M. chimaera infection cases from 2010 onwards through national epidemiological investigations in healthcare facilities performing cardiopulmonary bypass together with a survey on good practices and systematic heater-cooler unit microbial analyses. Clinical and HCU isolates were subjected to whole genome sequencing analyzed with regards to the reference outbreak strain Zuerich-1. Results Only two clinical cases were shown to be related to the outbreak, although 23% (41/175) heater-cooler units were declared positive for M. avium complex. Specific measures to prevent infection were applied in 89% (50/56) healthcare facilities although only 14% (8/56) of them followed the manufacturer maintenance recommendations. Whole genome sequencing comparison showed that the clinical isolates and 72% (26/36) of heater-cooler unit isolates belonged to the epidemic cluster. Within clinical isolates, 5 to 9 non-synonymous single nucleotide polymorphisms were observed, among which an in vivo mutation in a putative efflux pump gene observed in a clinical isolate obtained for one patient under antimicrobial treatment. Conclusions Cases of post-surgical M. chimaera infections were declared to be rare in France, although heater-cooler units were contaminated as in other countries. Genomic analyses confirmed the connection to the outbreak and identified specific single nucleotide polymorphisms, including one suggesting fitness evolution in vivo.


2021 ◽  
Author(s):  
Thomas K. F. Wong ◽  
Teng Li ◽  
Louis Ranjard ◽  
Steven Wu ◽  
Jeet Sukumaran ◽  
...  

AbstractA current strategy for obtaining haplotype information from several individuals involves short-read sequencing of pooled amplicons, where fragments from each individual is identified by a unique DNA barcode. In this paper, we report a new method to recover the phylogeny of haplotypes from short-read sequences obtained using pooled amplicons from a mixture of individuals, without barcoding. The method, AFPhyloMix, accepts an alignment of the mixture of reads against a reference sequence, obtains the single-nucleotide-polymorphisms (SNP) patterns along the alignment, and constructs the phylogenetic tree according to the SNP patterns. AFPhyloMix adopts a Bayesian model of inference to estimates the phylogeny of the haplotypes and their relative frequencies, given that the number of haplotypes is known. In our simulations, AFPhyloMix achieved at least 80% accuracy at recovering the phylogenies and frequencies of the constituent haplotypes, for mixtures with up to 15 haplotypes. AFPhyloMix also worked well on a real data set of kangaroo mitochondrial DNA sequences.


2021 ◽  
Vol 12 ◽  
Author(s):  
Grum Gebreyesus ◽  
Mogens Sandø Lund ◽  
Goutam Sahana ◽  
Guosheng Su

This study investigated effects of integrating single-nucleotide polymorphisms (SNPs) selected based on previous genome-wide association studies (GWASs), from imputed whole-genome sequencing (WGS) data, in the conventional 54K chip on genomic prediction reliability of young stock survival (YSS) traits in dairy cattle. The WGS SNPs included two groups of SNP sets that were selected based on GWAS in the Danish Holstein for YSS index (YSS_SNPs, n = 98) and SNPs chosen as peaks of quantitative trait loci for the traits of Nordic total merit index in Denmark–Finland–Sweden dairy cattle populations (DFS_SNPs, n = 1,541). Additionally, the study also investigated the possibility of improving genomic prediction reliability for survival traits by modeling the SNPs within recessive lethal haplotypes (LET_SNP, n = 130) detected from the 54K chip in the Nordic Holstein. De-regressed proofs (DRPs) were obtained from 6,558 Danish Holstein bulls genotyped with either 54K chip or customized LD chip that includes SNPs in the standard LD chip and some of the selected WGS SNPs. The chip data were subsequently imputed to 54K SNP together with the selected WGS SNPs. Genomic best linear unbiased prediction (GBLUP) models were implemented to predict breeding values through either pooling the 54K and selected WGS SNPs together as one genetic component (a one-component model) or considering 54K SNPs and selected WGS SNPs as two separate genetic components (a two-component model). Across all the traits, inclusion of each of the selected WGS SNP sets led to negligible improvements in prediction accuracies (0.17 percentage points on average) compared to prediction using only 54K. Similarly, marginal improvement in prediction reliability was obtained when all the selected WGS SNPs were included (0.22 percentage points). No further improvement in prediction reliability was observed when considering random regression on genotype code of recessive lethal alleles in the model including both groups of the WGS SNPs. Additionally, there was no difference in prediction reliability from integrating the selected WGS SNP sets through the two-component model compared to the one-component GBLUP.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2454
Author(s):  
Rebecca N. Bland ◽  
Jared D. Johnson ◽  
Joy G. Waite-Cusic ◽  
Alexandra J. Weisberg ◽  
Elizabeth R. Riutta ◽  
...  

Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0–2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.


2020 ◽  
Vol 189 (8) ◽  
pp. 841-849
Author(s):  
Fermín Acosta ◽  
Ana Fernández-Cruz ◽  
Sandra R Maus ◽  
Pedro J Sola-Campoy ◽  
Mercedes Marín ◽  
...  

Abstract In 2013–2014, an outbreak involving 14 patients infected by an extensively drug-resistant strain of Pseudomonas aeruginosa was detected in a hospital in Madrid, Spain. Our objective was to evaluate an alternative strategy for investigating the outbreak in depth by means of molecular and genomic approaches. Pulsed-field gel electrophoresis (PFGE) was applied as a first-line approach, followed by a more refined whole genome sequencing analysis. Single nucleotide polymorphisms identified by whole genome sequencing were used to design a specific polymerase chain reaction (PCR) for screening unsuspected cases infected by the outbreak strain. Whole genome sequencing alerted us to the existence of greater genetic diversity than was initially assumed, splitting the PFGE-associated outbreak isolates into 4 groups, 2 of which represented coincidental transmission unrelated to the outbreak. A multiplex allele-specific PCR targeting outbreak-specific single nucleotide polymorphisms was applied to 290 isolates, which allowed us to identify 25 additional cases related to the outbreak during 2011–2017. Whole genome sequencing coupled with an outbreak-strain-specific PCR enabled us to markedly redefine the initial picture of the outbreak by 1) ruling out initially suspected cases, 2) defining likely independent coincidental transmission events, 3) predating the starting point of the outbreak, 4) capturing new unsuspected cases, and 5) revealing that the outbreak was still active.


Sign in / Sign up

Export Citation Format

Share Document